Analysis of a Benchmark Building Installed with Tuned Mass Dampers under Wind and Earthquake Loads

Publisher's version (útgefin grein) This study presents analysis of a benchmark building installed with tuned mass dampers (TMDs) while subjected to wind and earthquake loads. Different TMD schemes are applied to reduce dynamic responses of the building under wind and earthquakes. The coupled e...

Full description

Bibliographic Details
Published in:Shock and Vibration
Main Authors: Elias, Said, Rupakhety, Rajesh, Olafsson, Stefan
Other Authors: Rannsóknarmiðstöð í jarðskjálftaverkfræði (HÍ), Earthquake Engineering Research Centre (UI), Verkfræði- og náttúruvísindasvið (HÍ), School of Engineering and Natural Sciences (UI), Háskóli Íslands, University of Iceland
Format: Article in Journal/Newspaper
Language:English
Published: Hindawi Limited 2019
Subjects:
Online Access:https://hdl.handle.net/20.500.11815/1879
https://doi.org/10.1155/2019/7091819
Description
Summary:Publisher's version (útgefin grein) This study presents analysis of a benchmark building installed with tuned mass dampers (TMDs) while subjected to wind and earthquake loads. Different TMD schemes are applied to reduce dynamic responses of the building under wind and earthquakes. The coupled equations of motion are formulated and solved using numerical methods. The uncontrolled building (NC) and the controlled building are subjected to a set of 100 earthquake ground motions and wind forces. The effectiveness of using different multiple TMD (MTMD) schemes as opposed to single TMD (STMD) is presented. Optimal TMD parameters and their location are investigated. For a tall structure like the one studied here, TMDs are found to be more effective in controlling acceleration response than displacement, when subjected to wind forces. It is observed that MTMDs with equal stiffness in each of the TMDs (usually considered for wind response control), when optimized for a given structure, are effective in controlling acceleration response under both wind and earthquake forces. However, if the device is designed with equal mass in every floor, it is less effective in controlling wind-induced floor acceleration. Therefore, when it comes to multihazard response control, distributed TMDs with equal stiffnesses should be preferred over those with equal masses. The authors acknowledge the support from the University of Iceland Research Fund. Peer Reviewed