Aerosol Concentrations in Relationship to Local Atmospheric Conditions on James Ross Island, Antarctica

Several important ice-free areas (e.g., Seymour Island, Cape Lamb on Vega Island, Terrapin Hill) are located in the Eastern Antarctic Peninsula region. The largest of these ice-free areas can be found on the Ulu Peninsula, James Ross Island, where this study was undertaken. The Ulu Peninsula covers...

Full description

Bibliographic Details
Published in:Frontiers in Earth Science
Main Authors: Kavan, Jan, Dagsson-Waldhauserova, Pavla, renard, jean-baptiste, Láska, Kamil, Ambrožová, Klára
Other Authors: Auðlinda- og umhverfisdeild (LBHÍ), Faculty of Natural Resources and Environmental Sciences (AUI), Landbúnaðarháskóli Íslands, Agricultural University of Iceland
Format: Article in Journal/Newspaper
Language:English
Published: Frontiers Media SA 2018
Subjects:
Online Access:https://hdl.handle.net/20.500.11815/1269
https://doi.org/10.3389/feart.2018.00207
Description
Summary:Several important ice-free areas (e.g., Seymour Island, Cape Lamb on Vega Island, Terrapin Hill) are located in the Eastern Antarctic Peninsula region. The largest of these ice-free areas can be found on the Ulu Peninsula, James Ross Island, where this study was undertaken. The Ulu Peninsula covers an area of 312 km2, and has been found to be an important active High Latitude Dust source. In this study, aerosol concentrations and local wind properties are described together with their linkages and typical synoptic situations. The highest aerosol concentrations of 57 μg m-3 for PM10 were detected during high wind speed events that exceeded 10 m s-1, which is also a threshold level for activating local mineral material sources. Surface deposition of dust particles can have significant environmental impacts such as changes in properties of atmosphere or enhanced snow melting. This work was in part funded by the Icelandic Research Fund (Rannis) Grant No. 152248-051; by the Czech Science Foundation project GC16-14122J and projects no. LM2015078, CZ.02.1.01/0.0/0.0/16_013/0001708; and the Masaryk University project MUNI/A/1251/2017. The LOAC instruments were funded by the French Labex VOLTAIRE. Field work was carried out with help of staff of the Johann Gregor Mendel Station. Peer Reviewed