Preliminary Investigation of the Potentialities of a Mesoscale Meteorological Model to Reproduce Experimental Statistics of Rain Attenuation on Earth-Space Links

International audience Current spatial resolutions achieved by mesoscale weather forecast models allow them to be used to generate the state of the lowest layers of the atmosphere over areas as small as a few square kilometers which corresponds to the typical size of the tropospheric area crossed by...

Full description

Bibliographic Details
Published in:International Journal of Antennas and Propagation
Main Authors: Castanet, Laurent, Le Mire, Valentin, Queyrel, Julien, Boulanger, Xavier, Féral, Laurent
Other Authors: DEMR, ONERA, Université de Toulouse Toulouse, ONERA-PRES Université de Toulouse, Centre National d'Études Spatiales Toulouse (CNES), Groupe de Recherche en Electromagnétisme (LAPLACE-GRE), LAboratoire PLasma et Conversion d'Energie (LAPLACE), Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP), Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3), Université de Toulouse (UT)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://hal.science/hal-03822321
https://hal.science/hal-03822321/document
https://hal.science/hal-03822321/file/demr21082.pdf
https://doi.org/10.1155/2022/4230236
Description
Summary:International audience Current spatial resolutions achieved by mesoscale weather forecast models allow them to be used to generate the state of the lowest layers of the atmosphere over areas as small as a few square kilometers which corresponds to the typical size of the tropospheric area crossed by Earth-space links. Furthermore, they allow the evolution of the troposphere to be predicted with a time stamp of five minutes instead of every hour with large-scale weather forecast models which makes them attractive for radio propagation predictions for satellite communication applications. This paper aims at studying the capability of the Weather Research and Forecast (WRF) model coupled with an electromagnetic physical model to reproduce rain attenuation statistics for Earth-space paths at Ka-band. To this purpose, one year of propagation measurements collected at 20 GHz in different places at midlatitudes in Toulouse and Salon de Provence (France), Spino d’Adda (Italy), Aveiro (Portugal), and Madrid (Spain), at high latitudes in Svalbard (Norway) and at low latitudes in Kourou are used to make comparisons between simulations and measurements. Comparisons between the simulated and the experimental annual statistics considered in this paper provide encouraging results, with a similar accuracy as Recommendation ITU-R P.618–13 for midlatitude European locations and with better accuracy for a high latitude area in Svalbard and for an equatorial location in French Guiana.