Trend Analyses of the Abundances of Atmospheric Molecules

A new line list for the A3Π - X3Σ- electronic transition of NH has been prepared using line positions from the literature and calculated line intensities. High level ab initio calculations were performed with the MOLPRO program to obtain the A - X transition dipole moment function. Potential energy...

Full description

Bibliographic Details
Main Author: Fernando, Anton
Format: Doctoral or Postdoctoral Thesis
Language:unknown
Published: ODU Digital Commons 2020
Subjects:
Online Access:https://digitalcommons.odu.edu/physics_etds/125
https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1125&context=physics_etds
Description
Summary:A new line list for the A3Π - X3Σ- electronic transition of NH has been prepared using line positions from the literature and calculated line intensities. High level ab initio calculations were performed with the MOLPRO program to obtain the A - X transition dipole moment function. Potential energy curves and line strengths were calculated with Le Roy's RKR1 and LEVEL programs. Line intensities and Einstein A values were calculated with Western's PGOPHER program after converting the Hund's case (b) output of LEVEL to Hund's case (a) input needed for PGOPHER. The Herman- Wallis effect is included in the Einstein A calculations of the bands for the levels with v' = 0 - 2 and v'' = 0 - 6. Spectra of pure isobutane were recorded at high temperature in the CH stretching region (2700-3100 cm-1) by high resolution Fourier transform spectroscopy. Isobutane absorption cross sections were determined for six temperatures from 273 K to 723 K. Integrated cross sections were compared with cross section data from the Pacific Northwest National Laboratory (PNNL) database. Near global ozone isotopologue distributions have been determined from infrared solar occultation measurements of the Atmospheric Chemistry Experiment (ACE) satellite mission. ACE measurements are made with a high resolution Fourier transform spectrometer (ACE-FTS). Annual and seasonal latitudinal fractionation (δ value) distributions of the ozone isotopologues 16O16O18O, 16O18O16O and 16O17O16O were obtained. Asymmetric ozone (16O16O18O) shows higher fractionation compared to symmetric ozone (16O18O16O). The maximum ozone fractionation occurs in the tropical stratosphere as expected from the contribution of photolysis to the enrichment of heavy isotopologues. An enhancement of the heavy ozone isotopologues is also seen in the upper stratosphere of the Antarctic polar vortex. A new version of ACE-FTS routine data product (4.0) provides near global VMR altitude profile of low altitude CO2 on a 1 km grid from 5-18 km. An initial evaluation of these data has been ...