Subseasonal Winter Weather Predictability Associated with Single vs. Multiple Wave Pulse Events and their Impact on the Arctic Stratospheric Polar Vortex

Variability in the Arctic stratospheric polar vortex can lead to extreme winter weather across the Northern Hemisphere, which can have large socioeconomic impacts. Dynamically, increased vertical wave activity from the troposphere into the polar stratosphere fluxes anomalous heat towards the pole, r...

Full description

Bibliographic Details
Main Author: Ohnstad, Jacob
Other Authors: Furtado, Jason, Naoko, Sakaeda, Martin, Elinor
Language:English
Published: 2020
Subjects:
Online Access:https://hdl.handle.net/11244/325304
id ftoklahomaunivs:oai:shareok.org:11244/325304
record_format openpolar
spelling ftoklahomaunivs:oai:shareok.org:11244/325304 2023-05-15T15:01:57+02:00 Subseasonal Winter Weather Predictability Associated with Single vs. Multiple Wave Pulse Events and their Impact on the Arctic Stratospheric Polar Vortex Ohnstad, Jacob Furtado, Jason Naoko, Sakaeda Martin, Elinor 2020-07-30 application/pdf application/octet-stream https://hdl.handle.net/11244/325304 en_US eng OU Thesis and Dissertation Collections https://hdl.handle.net/11244/325304 Stratospheric Polar Vortex Polar Vortex Disruptions Wave interactions with the Polar Vortex 2020 ftoklahomaunivs 2023-01-25T21:15:51Z Variability in the Arctic stratospheric polar vortex can lead to extreme winter weather across the Northern Hemisphere, which can have large socioeconomic impacts. Dynamically, increased vertical wave activity from the troposphere into the polar stratosphere fluxes anomalous heat towards the pole, resulting in the warming and weakening of the stratospheric polar vortex. Characteristics of these vertical wave driving events are not well understood as they can vary in strength, duration, and location. This research addresses the knowledge gap associated with vertical wave driving characteristics and the impact they have on the stratospheric polar vortex. Here we compare the impacts of single versus multiple vertically propagating wave events entering the polar stratosphere in both ERA-Interim and hindcasts of operational subseasonal models in the Subseasonal-to-Seasonal (S2S) Prediction Project Database. Tropospheric height patterns that occur on the start day of single and multiple pulse events include anomalous ridging over Northern Eurasia and the North Atlantic as well as an anomalous trough or zonal trough-ridge pattern over the North Pacific. These anomalous patterns are co-located with large meridional heat flux anomalies during the events. Single pulse events have less persistent tropospheric features and are found to be relatively short-lived and weaker compared to multiple pulse events. As a result, the vortex is much weaker following multiple pulse events than single pulse events. The significant stratospheric anomalies that occur with these events more readily downward propagate into the troposphere following multiple pulse events versus single pulse events. S2S models capture well the spatial patterns of single and multiple pulse events on the start day of the event, but struggle to produce stationary features at later lags, such as blocking highs, which are important for producing multiple pulse events. In both reanalysis and S2S models, the North Pacific, Europe, and Siberia are the regions favored ... Other/Unknown Material Arctic North Atlantic Siberia University of Oklahoma/Oklahoma State University: SHAREOK Repository Arctic Pacific
institution Open Polar
collection University of Oklahoma/Oklahoma State University: SHAREOK Repository
op_collection_id ftoklahomaunivs
language English
topic Stratospheric Polar Vortex
Polar Vortex Disruptions
Wave interactions with the Polar Vortex
spellingShingle Stratospheric Polar Vortex
Polar Vortex Disruptions
Wave interactions with the Polar Vortex
Ohnstad, Jacob
Subseasonal Winter Weather Predictability Associated with Single vs. Multiple Wave Pulse Events and their Impact on the Arctic Stratospheric Polar Vortex
topic_facet Stratospheric Polar Vortex
Polar Vortex Disruptions
Wave interactions with the Polar Vortex
description Variability in the Arctic stratospheric polar vortex can lead to extreme winter weather across the Northern Hemisphere, which can have large socioeconomic impacts. Dynamically, increased vertical wave activity from the troposphere into the polar stratosphere fluxes anomalous heat towards the pole, resulting in the warming and weakening of the stratospheric polar vortex. Characteristics of these vertical wave driving events are not well understood as they can vary in strength, duration, and location. This research addresses the knowledge gap associated with vertical wave driving characteristics and the impact they have on the stratospheric polar vortex. Here we compare the impacts of single versus multiple vertically propagating wave events entering the polar stratosphere in both ERA-Interim and hindcasts of operational subseasonal models in the Subseasonal-to-Seasonal (S2S) Prediction Project Database. Tropospheric height patterns that occur on the start day of single and multiple pulse events include anomalous ridging over Northern Eurasia and the North Atlantic as well as an anomalous trough or zonal trough-ridge pattern over the North Pacific. These anomalous patterns are co-located with large meridional heat flux anomalies during the events. Single pulse events have less persistent tropospheric features and are found to be relatively short-lived and weaker compared to multiple pulse events. As a result, the vortex is much weaker following multiple pulse events than single pulse events. The significant stratospheric anomalies that occur with these events more readily downward propagate into the troposphere following multiple pulse events versus single pulse events. S2S models capture well the spatial patterns of single and multiple pulse events on the start day of the event, but struggle to produce stationary features at later lags, such as blocking highs, which are important for producing multiple pulse events. In both reanalysis and S2S models, the North Pacific, Europe, and Siberia are the regions favored ...
author2 Furtado, Jason
Naoko, Sakaeda
Martin, Elinor
author Ohnstad, Jacob
author_facet Ohnstad, Jacob
author_sort Ohnstad, Jacob
title Subseasonal Winter Weather Predictability Associated with Single vs. Multiple Wave Pulse Events and their Impact on the Arctic Stratospheric Polar Vortex
title_short Subseasonal Winter Weather Predictability Associated with Single vs. Multiple Wave Pulse Events and their Impact on the Arctic Stratospheric Polar Vortex
title_full Subseasonal Winter Weather Predictability Associated with Single vs. Multiple Wave Pulse Events and their Impact on the Arctic Stratospheric Polar Vortex
title_fullStr Subseasonal Winter Weather Predictability Associated with Single vs. Multiple Wave Pulse Events and their Impact on the Arctic Stratospheric Polar Vortex
title_full_unstemmed Subseasonal Winter Weather Predictability Associated with Single vs. Multiple Wave Pulse Events and their Impact on the Arctic Stratospheric Polar Vortex
title_sort subseasonal winter weather predictability associated with single vs. multiple wave pulse events and their impact on the arctic stratospheric polar vortex
publishDate 2020
url https://hdl.handle.net/11244/325304
geographic Arctic
Pacific
geographic_facet Arctic
Pacific
genre Arctic
North Atlantic
Siberia
genre_facet Arctic
North Atlantic
Siberia
op_relation OU Thesis and Dissertation Collections
https://hdl.handle.net/11244/325304
_version_ 1766333956698931200