Late glacial dynamics on the continental shelf of NE-Greenland - implications from submarine landforms

Favorable sea-ice conditions gave way to an acoustic survey offshore NE-Greenland in 2009. The acquired data set clearly depicts an area of sediment ridges in an area of at app. 18 x 9 km. The ridges are found in water depths between 270 and 350 m. The sediment ridges expand between 2,5 – 9 km, are...

Full description

Bibliographic Details
Main Authors: Winkelmann, Daniel, Jokat, Wilfried, Jensen, Laura, Schenke, Hans-Werner
Format: Conference Object
Language:English
Published: 2010
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/9955/
https://oceanrep.geomar.de/id/eprint/9955/1/Winkelmann_EGU2010-1223.pdf
http://meetings.copernicus.org/egu2010/
Description
Summary:Favorable sea-ice conditions gave way to an acoustic survey offshore NE-Greenland in 2009. The acquired data set clearly depicts an area of sediment ridges in an area of at app. 18 x 9 km. The ridges are found in water depths between 270 and 350 m. The sediment ridges expand between 2,5 – 9 km, are 50 – 250 m wide and between 10 and 25 m high. In profile and without exception, these ridges are characterized by steep slopes towards West and gentle slopes towards East. Their internal structure, imaged by parametric echo-sounding data, shows that they have been deposited on a rather plain surface, thus representing positive sedimentation features rather than erosive remnant structures. Their curved shape, joint orientation and position on a basal till surface indicate their origin from glacial dynamics. We interpret these ridges as a set of terminal moraines. Since they are positioned on a basal till that extends further east, we consider these moraines to reflect short-lived re-advances during an overall recession of the ice stream. This is direct evidence for a highly dynamic behavior of an ice stream from the NE-Greenland Ice Sheet. The ages for these re-advances can be inferred from a thin sedimentary drape indicating a timing between Late Glacial and early Holocene.