Zooplankton seasonal vertical migration in an optimality-based plankton ecosystem model

Several species from various zooplankton taxa perform seasonal vertical migrations (SVM) of typically several hundred meters between the surface layer and overwintering depths, particularly in high-latitude regions. We use OPtimality-based PLAnkton (OPPLA) ecosystem model) to simulate SVM behavior i...

Full description

Bibliographic Details
Main Authors: Grossowicz, Michal, Pahlow, Markus
Format: Article in Journal/Newspaper
Language:English
Published: Oxford University Press 2024
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/60265/
https://oceanrep.geomar.de/id/eprint/60265/7/fbae016.pdf
https://doi.org/10.1093/plankt%2Ffbae016
https://doi.org/10.1093/plankt/fbae016
Description
Summary:Several species from various zooplankton taxa perform seasonal vertical migrations (SVM) of typically several hundred meters between the surface layer and overwintering depths, particularly in high-latitude regions. We use OPtimality-based PLAnkton (OPPLA) ecosystem model) to simulate SVM behavior in zooplankton in the Labrador Sea. Zooplankton in OPPLA is a generic functional group without life cycle, which facilitates analyzing SVM evolutionary stability and interactions between SVM and the plankton ecosystem. A sensitivity analysis of SVM-related parameters reveals that SVM can amplify the seasonal variations of phytoplankton and zooplankton and enhance the reduction of summer surface nutrient concentrations. SVM is often explained as a strategy to reduce exposure to visual predators during winter. We find that species doing SVM can persist and even dominate the summer-time zooplankton community, even in the presence of Stayers, which have the same traits as the migrators, but do not perform SVM. The advantage of SVM depends strongly on the timing of the seasonal migrations, particularly the day of ascent. The presence of higher (visual) predators tends to suppress the Stayers in our simulations, whereas the SVM strategy can persist in the presence of non-migrating species even without higher predators.