Propagation and Transformation of Upper North Atlantic Deep Water From the Subpolar Gyre to 26.5°N

Because new observations have revealed that the Labrador Sea is not the primary source for waters in the lower limb of the Atlantic Meridional Overturning Circulation (AMOC) during the Overturning in the Subpolar North Atlantic Programme (OSNAP) period, it seems timely to re-examine the traditional...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Oceans
Main Authors: Petit, T., Lozier, M. S., Rühs, Siren, Handmann, Patricia, Biastoch, Arne
Format: Article in Journal/Newspaper
Language:English
Published: AGU (American Geophysical Union) 2023
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/59130/
https://oceanrep.geomar.de/id/eprint/59130/1/JGR%20Oceans%20-%202023%20-%20Petit.pdf
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2023JC019726
https://doi.org/10.1029/2023JC019726
Description
Summary:Because new observations have revealed that the Labrador Sea is not the primary source for waters in the lower limb of the Atlantic Meridional Overturning Circulation (AMOC) during the Overturning in the Subpolar North Atlantic Programme (OSNAP) period, it seems timely to re-examine the traditional interpretation of pathways and property variability for the AMOC lower limb from the subpolar gyre to 26.5 degrees N. In order to better understand these connections, Lagrangian experiments were conducted within an eddy-rich ocean model to track upper North Atlantic Deep Water (uNADW), defined by density, between the OSNAP line and 26.5 degrees N as well as within the Labrador Sea. The experiments reveal that 77% of uNADW at 26.5 degrees N is directly advected from the OSNAP West section along the boundary current and interior pathways west of the Mid-Atlantic Ridge. More precisely, the Labrador Sea is a main gateway for uNADW sourced from the Irminger Sea, while particles connecting OSNAP East to 26.5 degrees N are exclusively advected from the Iceland Basin and Rockall Trough along the eastern flank of the Mid-Atlantic Ridge. Although the pathways between OSNAP West and 26.5 degrees N are only associated with a net formation of 1.1 Sv into the uNADW layer, they show large density changes within the layer. Similarly, as the particles transit through the Labrador Sea, they undergo substantial freshening and cooling that contributes to further densification within the uNADW layer. Key Points: - The large majority of upper North Atlantic Deep Water (uNADW) sourced from the Irminger Sea transits through the Labrador Sea before reaching 26.5°N - Interior pathways along the eastern flank of the Mid-Atlantic Ridge connect the Iceland Basin and Rockall Trough to 26.5°N - Though uNADW is mainly sourced in the eastern subpolar gyre, its transit in the Labrador Sea is associated with further property changes