Quantifying Ice‐Sheet Derived Lead (Pb) Fluxes to the Ocean; A Case Study at Nioghalvfjerdsbræ

Concentrations of the toxic element lead (Pb) are elevated in seawater due to historical emissions. While anthropogenic atmospheric emissions are the dominant source of dissolved Pb (dPb) to the Atlantic Ocean, evidence is emerging of a natural source associated with subglacial discharge into the oc...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Krisch, Stephan, Huhn, Oliver, Al-Hashem, Ali, Hopwood, Mark J., Lodeiro, Pablo, Achterberg, Eric P.
Format: Article in Journal/Newspaper
Language:English
Published: AGU (American Geophysical Union) 2022
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/57245/
https://oceanrep.geomar.de/id/eprint/57245/1/Geophysical%20Research%20Letters%20-%202022%20-%20Krisch%20-%20Quantifying%20Ice%E2%80%90Sheet%20Derived%20Lead%20Pb%20Fluxes%20to%20the%20Ocean%20A%20Case%20Study%20at.pdf
https://oceanrep.geomar.de/id/eprint/57245/7/2022gl100296-sup-0001-supporting%20information%20si-s01.pdf
https://doi.org/10.1029/2022GL100296
Description
Summary:Concentrations of the toxic element lead (Pb) are elevated in seawater due to historical emissions. While anthropogenic atmospheric emissions are the dominant source of dissolved Pb (dPb) to the Atlantic Ocean, evidence is emerging of a natural source associated with subglacial discharge into the ocean but this has yet to be constrained around Greenland. Here, we show subglacial discharge from the cavity underneath Nioghalvfjerdsbræ floating ice tongue, is a previously unrecognized source of dPb to the NE Greenland Shelf. Contrasting cavity-inflowing and cavity-outflowing waters, we constrain the associated net-dPb flux as 2.2 ± 1.4 Mg·yr−1, of which ∼90% originates from dissolution of glacial bedrock and cavity sediments. We propose that the retreat of the floating ice tongue, the ongoing retreat of many glaciers on Greenland, associated shifts in sediment dynamics, and enhanced meltwater discharges into shelf waters may result in pronounced changes, possibly increases, in net-dPb fluxes to coastal waters. Key Points - Helium and neon show strong evidence for a subglacial source of Pb discharging onto the NE Greenland Shelf - Contrasting inflowing and outflowing waters beneath the floating ice tongue of Nioghalvfjerdsbræ shows a 2-3-fold dPb enrichment - The dissolved Pb flux from Nioghalvfjerdsbræ (2.2 ± 1.4 Mg·yr−1) is comparable to small Arctic rivers, with ∼90% of a sedimentary origin