Oxygen export to the deep ocean following Labrador Sea Water formation

The Labrador Sea in the North Atlantic Ocean is one of the few regions globally where oxygen from the atmosphere can reach the deep ocean directly. This is the result of wintertime deep convection, which homogenizes the water column to a depth of up to 2000 m and brings deep water undersaturated in...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Koelling, Jannes, Atamanchuk, Dariia, Karstensen, Johannes, Handmann, Patricia, Wallace, Douglas W. R.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications (EGU) 2022
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/54652/
https://oceanrep.geomar.de/id/eprint/54652/7/bg-19-437-2022.pdf
https://bg.copernicus.org/articles/19/437/2022/bg-19-437-2022.html
https://doi.org/10.5194/bg-19-437-2022
Description
Summary:The Labrador Sea in the North Atlantic Ocean is one of the few regions globally where oxygen from the atmosphere can reach the deep ocean directly. This is the result of wintertime deep convection, which homogenizes the water column to a depth of up to 2000 m and brings deep water undersaturated in oxygen into contact with the atmosphere. In this study, we analyze how the intense oxygen uptake during Labrador Sea Water (LSW) formation affects the properties of the outflowing deep western boundary current, which ultimately feeds the upper part of the North Atlantic Deep Water layer in much of the Atlantic Ocean. Seasonal cycles of oxygen concentration, temperature, and salinity from a 2-year time series collected by sensors moored at 600 m nominal depth in the outflowing boundary current at 53∘ N show a cooling, freshening, and increase in oxygen content of the water flowing out of the basin between March and August. Analysis of Argo float data suggests that this is preceded by an increased input of LSW into the boundary current about 1 month earlier. This input is the result of newly ventilated LSW entering from the interior, as well as LSW formed directly within the boundary current. Together, these results imply that the southward export of newly formed LSW primarily occurs in the months following the onset of deep convection, from March to August, and that this direct LSW export route controls the seasonal oxygen increase in the outflow at 600 m depth. During the rest of the year, properties of the boundary current measured at 53∘ N resemble those of Irminger Water, which enters the basin with the boundary current from the Irminger Sea. The input of newly ventilated LSW increases the oxygen concentration from 298 µmol L−1 in January to a maximum of 306 µmol L−1 in April. As a result of this LSW input, an estimated (1.60 ± 0.42) × 1012 mol yr−1 of oxygen are added to the outflowing boundary current, mostly during spring and summer, equivalent to 50 % of the wintertime uptake from the atmosphere in the interior ...