Mountain glaciers and ice caps around Antarctica make a large sea-level rise contribution

The Intergovernmental Panel on Climate Change (IPCC) estimates that the sum of all contributions to sea‐level rise for the period 1961–2004 was 1.1 ± 0.5 mm a−1, leaving 0.7 ± 0.7 of the 1.8 ± 0.5 mm a−1 observed sea‐level rise unexplained. Here, we compute the global surface mass balance of all mou...

Full description

Bibliographic Details
Published in:Geophysical Research Letters
Main Authors: Hock, Regine, de Woul, Mattias, Radić, Valentina, Dyurgerov, Mark
Format: Article in Journal/Newspaper
Language:English
Published: AGU (American Geophysical Union) 2009
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/48426/
https://oceanrep.geomar.de/id/eprint/48426/1/Hock%20et%20al.pdf
https://doi.org/10.1029/2008GL037020
Description
Summary:The Intergovernmental Panel on Climate Change (IPCC) estimates that the sum of all contributions to sea‐level rise for the period 1961–2004 was 1.1 ± 0.5 mm a−1, leaving 0.7 ± 0.7 of the 1.8 ± 0.5 mm a−1 observed sea‐level rise unexplained. Here, we compute the global surface mass balance of all mountain glaciers and ice caps (MG&IC), and find that part of this much‐discussed gap can be attributed to a larger contribution than previously assumed from mass loss of MG&IC, especially those around the Antarctic Peninsula. We estimate global surface mass loss of all MG&IC as 0.79 ± 0.34 mm a−1 sea‐level equivalent (SLE) compared to IPCC's 0.50 ± 0.18 mm a−1. The Antarctic MG&IC contributed 28% of the global estimate due to exceptional warming around the Antarctic Peninsula and high sensitivities to temperature similar to those we find in Iceland, Patagonia and Alaska.