Closure of the Africa-Eurasia-North America Plate motion circuit and tectonics of the Gloria Fault

We examine the closure of the current plate motion circuit between the African, North American, and Eurasian plates to test whether these plates are rigid and whether the Gloria fault is an active transform fault. We also investigate the possible existence of microplates that have been previously pr...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Argus, Donald F., Gordon, Richard G., DeMets, Charles, Stein, Seth
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 1989
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/47954/
https://oceanrep.geomar.de/id/eprint/47954/1/Argus.pdf
https://doi.org/10.1029/JB094iB05p05585
Description
Summary:We examine the closure of the current plate motion circuit between the African, North American, and Eurasian plates to test whether these plates are rigid and whether the Gloria fault is an active transform fault. We also investigate the possible existence of microplates that have been previously proposed to lie along these plate boundaries, and compare the predicted direction of motion along the African‐Eurasian plate boundary in the Mediterranean with the direction of slip observed in earthquakes. From marine geophysical data we obtain 13 transform fault azimuths and 40 3‐m.y.‐average spreading rates, 34 of which are determined from comparison of synthetic magnetic anomaly profiles to ∼140 observed profiles. Slip vectors from 32 earthquake focal mechanisms further describe plate motion. Detailed magnetic surveys north of Iceland provide 11 rates in a region where prior plate motion models had few data. Magnetic profiles north of the Azores triple junction record a rate of 24 mm/yr, 4 mm/yr slower than used by prior models. Gloria and Sea Beam surveys accurately measure the azimuths of seven transform faults; our plate motion model fits six of the seven within 2°. Two transform faults surveyed by Gloria side scan sonar lie near FAMOUS area transform faults A and B and give azimuths 13° clockwise of them. Because recent studies show that short‐offset transforms, such as transforms A and B, are in many places oblique to the direction of plate motion, we exclude azimuths from transforms with less than 35‐km offset. The best fitting and closure‐enforced vectors fit the data well, except for a small systematic misfit to the slip vectors: On right‐lateral slipping transforms, slip vectors tend to be a few degrees clockwise of plate motion and mapped fault azimuths, whereas on left‐lateral slipping transforms, slip vectors tend to be a few degrees counterclockwise of plate motion and mapped fault azimuths. We search the long Eurasia‐North America boundary for evidence of an additional plate, but find no systematic ...