Lip-reading in remote subjects: An attempt to quantify and separate ingestion, breathing and vocalisation in free-living animals

A new mandibular sensor is presented here based on the use of a Hall sensor, attached to one mandible, opposite a magnet, attached to the other mandible. Changes in sensor voltage, proportional to magnetic field strength, and thus inter-mandibular angle, are recorded in a logger. This system was tes...

Full description

Bibliographic Details
Published in:Marine Biology
Main Authors: Wilson, Rory P., Steinfurth, Antje, Ropert-Coudert, Y., Kato, A., Kurita, M.
Format: Article in Journal/Newspaper
Language:English
Published: Springer 2002
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/3813/
https://oceanrep.geomar.de/id/eprint/3813/1/art_10.1007_s002270100659.pdf
https://doi.org/10.1007/s002270100659
Description
Summary:A new mandibular sensor is presented here based on the use of a Hall sensor, attached to one mandible, opposite a magnet, attached to the other mandible. Changes in sensor voltage, proportional to magnetic field strength, and thus inter-mandibular angle, are recorded in a logger. This system was tested on seven captive Adélie penguins (Pygoscelis adeliae) and three gentoo penguins (Pygoscelis papua) during: (1) feeding trials on land, where birds were given known quantities and types of food; and (2) trials in water where birds were allowed to swim and dive freely. In addition, six free-living Magellanic penguins (Spheniscus magellanicus) were equipped with the system for single foraging trips. Angular signatures were looked for in instances when both captive and free-living birds might open their beaks, and it was discovered that five major behaviours could be identified: ingestion, breathing, calling, head shaking and preening. Captive feeding trials showed that prey mass could be determined with reasonable accuracy (r 2=0.92), and there was some indication that prey type could be resolved if recording frequency were high enough. Vocalisations in Adélie penguins (arc calls) took <0.7 s for mean maximum beak angles of 4.2° (SD 1.3), and were distinguished by their relatively gradual change in beak angle and by their high degree of symmetry. Beak shakings were distinguishable by their short duration (multiple peaks of <0.5 s) and minimal maximum angle (<0.5°). Preening behaviour was apparent due to multiple decreasing peaks (angles <8°). Breathing could be subdivided into that during porpoising, where a characteristic double peak in beak angle was recorded, and that during normal surface rests between dives. During porpoising, only the primary peak (mean maximum beak angle 25.1°, SD 4.7) occurred when the bird was out of the water (mean maximum for second peak 5.9°, SD 4.1). During normal surface rests in free-living birds, breaths could be distinguished as a series of beak openings and closures, ...