Mapping submarine glacial landforms using acoustic methods

The mapping of submarine glacial landforms is largely dependent on marine geophysical survey methods capable of imaging the seafloor and sub-bottom through the water column. Full global coverage of seafloor mapping, equivalent to that which exists for the Earth's land surface, has, to date, onl...

Full description

Bibliographic Details
Published in:Geological Society, London, Memoirs
Main Authors: Jakobsson, M., Gyllencreutz, R., Mayer, L. A., Dowdeswell, J. A., Canals, M., Todd, B. J., Dowdeswell, E. K., Hogan, K. A., Larter, R. D.
Format: Book Part
Language:English
Published: Geological Society 2016
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/36551/
https://oceanrep.geomar.de/id/eprint/36551/1/Geological%20Society,%20London,%20Memoirs-2016-Jakobsson-17-40.pdf
https://doi.org/10.1144/M46.182
Description
Summary:The mapping of submarine glacial landforms is largely dependent on marine geophysical survey methods capable of imaging the seafloor and sub-bottom through the water column. Full global coverage of seafloor mapping, equivalent to that which exists for the Earth's land surface, has, to date, only been achieved by deriving bathymetry from radar altimeters on satellites such as GeoSat and ERS-1 (Smith & Sandwell 1997). The horizontal resolution is limited by the footprint of the satellite sensors and the need to average out local wave and wind effects, resulting in a cell size of about 15 km (Sandwell et al. 2001). A further problem in high latitudes is that the altimeter data are extensively contaminated by the presence of sea ice, which degrades the derived bathymetry (McAdoo & Laxon 1997). Consequently, the satellite altimeter method alone is not suitable for mapping submarine glacial landforms, given that their morphological characterization usually requires a much finer level of detail. Acoustic mapping methods based on marine echo-sounding principles are currently the most widely used techniques for mapping submarine glacial landforms because they are capable of mapping at a much higher resolution.