Characteristics of the Recent Eastward Shift of Interannual NAO Variability

Recent observational studies have shown that the centers of action of interannual variability of the North Atlantic Oscillation (NAO) were located farther eastward during winters of the period 1978–97 compared to previous decades of the twentieth century. In this study, which focuses on the winter s...

Full description

Bibliographic Details
Main Authors: Jung, Thomas, Hilmer, Michael, Kleppek, Sabine, Ruprecht, Eberhard, Gulev, Sergej, Zolina, Olga
Format: Article in Journal/Newspaper
Language:English
Published: AMS (American Meteorological Society) 2003
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/3084/
https://oceanrep.geomar.de/id/eprint/3084/1/1520-0442%282003%29016_3371_COTRES_2.0.pdf
https://doi.org/10.1175/1520-0442(2003)016<3371:COTRES>2.0.CO;2
Description
Summary:Recent observational studies have shown that the centers of action of interannual variability of the North Atlantic Oscillation (NAO) were located farther eastward during winters of the period 1978–97 compared to previous decades of the twentieth century. In this study, which focuses on the winter season (December–March), new diagnostics characterizing this shift are presented. Further, the importance of this shift for NAO-related interannual climate variability in the North Atlantic region is discussed. It is shown that an NAO-related eastward shift in variability can be found for a wide range of different parameters like the number of deep cyclones, near-surface air temperature, and turbulent surface heat flux throughout the North Atlantic region. By using a near-surface air temperature dataset that is homogenous with respect to the kind of observations used, it is shown that the eastward shift is not an artifact of changes in observational practices that took place around the late 1970s. Finally, an EOF-based Monte Carlo test is developed to quantify the probability of changes in the spatial structure of interannual NAO variability for a relatively short (20 yr) time series given multivariate “white noise.” It is estimated that the likelihood for differences in the spatial structure of the NAO between two independent 20-yr periods, which are similar (as measured by the angle and pattern correlation between two NAO patterns) to the observed differences, to occur just by chance is about 18%. From the above results it is argued that care has to be taken when conclusions about long-term properties of NAO-related climate variability are being drawn from relatively short recent observational data (e.g., 1978–97).