Reconsidering the role of carbonate ion concentration in calcification by marine organisms

Marine organisms precipitate 0.5–2.0 Gt of carbon as calcium carbonate (CaCO3) every year with a profound impact on global biogeochemical element cycles. Biotic calcification relies on calcium ions (Ca2+) and generally on bicarbonate ions (HCO3−) as CaCO3 substrates and can be inhibited by high prot...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Author: Bach, Lennart T.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications (EGU) 2015
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/28810/
https://oceanrep.geomar.de/id/eprint/28810/1/Bach%202015%20-%20Reconsidering%20the%20role%20of%20carbonate%20ion%20concentration%20in%20calcification%20by%20marine%20organisms.pdf
https://doi.org/10.5194/bg-12-4939-2015
Description
Summary:Marine organisms precipitate 0.5–2.0 Gt of carbon as calcium carbonate (CaCO3) every year with a profound impact on global biogeochemical element cycles. Biotic calcification relies on calcium ions (Ca2+) and generally on bicarbonate ions (HCO3−) as CaCO3 substrates and can be inhibited by high proton (H+) concentrations. The seawater concentration of carbonate ions (CO32−) and the CO32−-dependent CaCO3 saturation state (ΩCaCO3) seem to be irrelevant in this production process. Nevertheless, calcification rates and the success of calcifying organisms in the oceans often correlate surprisingly well with these two carbonate system parameters. This study addresses this dilemma through rearrangement of carbonate system equations which revealed an important proportionality between [CO32−] or ΩCaCO3 and the ratio of [HCO3−] to [H+]. Due to this proportionality, calcification rates will always correlate equally well with [HCO3−]/[H+] as with [CO32−] or ΩCaCO3 when temperature, salinity, and pressure are constant. Hence, [CO32−] and ΩCaCO3 may simply be very good proxies for the control by [HCO3−]/[H+] where [HCO3−] would be the inorganic carbon substrate and [H+] would function as calcification inhibitor. If the "substrate-inhibitor ratio" (i.e. [HCO3−]/[H+]) rather than [CO32−] or ΩCaCO3 controls CaCO3 formation then some of the most common paradigms in ocean acidification research need to be reviewed. For example, the absence of a latitudinal gradient in [HCO3−]/[H+] in contrast to [CO32−] and ΩCaCO3 could modify the common assumption that high latitudes are affected most severely by ocean acidification.