Constraints on mantle melting and composition and nature of slab components in volcanic arcs from volatiles (H 2 O, S, Cl, F) and trace elements in melt inclusions from the Kamchatka Arc

New and published data on the composition of melt inclusions in olivine (Fo73–91) from volcanoes of the Kamchatka and northern Kurile Arc are used 1) to evaluate the combined systematics of volatiles (H2O, S, Cl, F) and incompatible trace elements in their parental magmas and mantle sources, 2) to c...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Portnyagin, Maxim, Hoernle, Kaj, Plechov, P. Y., Mironov, N. L., Khubunaya, S. A.
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2007
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/2799/
https://oceanrep.geomar.de/id/eprint/2799/1/1-s2.0-S0012821X06008727-main.pdf
https://doi.org/10.1016/j.epsl.2006.12.005
Description
Summary:New and published data on the composition of melt inclusions in olivine (Fo73–91) from volcanoes of the Kamchatka and northern Kurile Arc are used 1) to evaluate the combined systematics of volatiles (H2O, S, Cl, F) and incompatible trace elements in their parental magmas and mantle sources, 2) to constrain thermal conditions of mantle melting, and 3) to estimate the composition of slab-derived components. We demonstrate that typical Kamchatkan arc-type magmas originate through 5–14% melting of sources similar or slightly more depleted in HFSE (with up to ∼ 1 wt.% previous melt extraction) compared to MORB-source mantle, but strongly enriched in H2O, B, Be, Li, Cl, F, LILE, LREE, Th and U. Mean H2O in parental melts (1.8–2.6 wt.%) decreases with increasing depth to the subducting slab and correlates negatively with both ‘fluid-immobile’ (e.g. Ti, Na, LREE) and most ‘fluid-mobile’ (e.g. LILE, S, Cl, F) incompatible elements, implying that solubility in hydrous fluids or amount of water does not directly control the abundance of ‘fluid-mobile’ incompatible elements. Strong correlation is observed between H2O/Ce and B/Zr (or B/LREE) ratios. Both, calculated H2O in mantle sources (0.1–0.4%) and degrees of melting (5–14%) decrease with increasing depth to the slab indicating that the ultimate source of water in the sub-arc mantle is the subducting oceanic plate and that water flux (together with mantle temperature) governs the extent of mantle melting beneath Kamchatka. A parameterized hydrous melting model [Katz et al. 2003, G3, 4(9), 1073] is utilized to estimate that mantle melting beneath Kamchatka occurs at or below the dry peridotite solidus (1245–1330 °C at 1.5–2.0 GPa). Relatively high mantle temperatures (yet lower than beneath back-arc basins and ocean ridges) suggest substantial corner flow driven mantle upwelling beneath Kamchatka in agreement with numerical models implying non-isoviscous mantle wedge rheology. Data from Kamchatka, Mexico and Central America indicate that < 5% melting would take place ...