Impacts of ocean warming and acidification on the larval development of the barnacle Amphibalanus improvisus

The world's oceans are warming and becoming more acidic. Both stressors, singly or in combination, impact marine species, and ensuing effects might be particularly serious for early life stages. To date most studies have focused on ocean acidification (OA) effects in fully marine environments,...

Full description

Bibliographic Details
Published in:Journal of Experimental Marine Biology and Ecology
Main Authors: Pansch, Christian, Nasrolahi, Ali, Appelhans, Yasmin, Wahl, Martin
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2012
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/15143/
https://oceanrep.geomar.de/id/eprint/15143/1/Pansch.pdf
https://doi.org/10.1016/j.jembe.2012.03.023
Description
Summary:The world's oceans are warming and becoming more acidic. Both stressors, singly or in combination, impact marine species, and ensuing effects might be particularly serious for early life stages. To date most studies have focused on ocean acidification (OA) effects in fully marine environments, while little attention has been devoted to more variable coastal ecosystems, such as the Western Baltic Sea. Since natural spatial and temporal variability of environmental conditions such as salinity, temperature or pCO(2) impose more complex stresses upon organisms inhabiting these habitats, species can be expected to be more tolerant to OA (or warming) than fully marine taxa. We present data on the variability of salinity, temperature and pH within the Kiel Fjord and on the responses of the barnacle Amphibalanus improvisus from this habitat to simulated warming and OA during its early development. Nauplii and cyprids were exposed to different temperature (12, 20 and 27 degrees C) and pCO(2) (nominally 400, 1250 and 3250 mu atm) treatments for 8 and 4 weeks, respectively. Survival, larval duration and settlement success were monitored. Warming affected larval responses more strongly than OA. Increased temperatures favored survival and development of nauplii but decreased survival of cyprids. OA had no effect upon survival of nauplii but enhanced their development at low (12 degrees C) and high (27 degrees C) temperatures. In contrast, at the intermediate temperature (20 degrees C), nauplii were not affected even by 3250 mu atm pCO(2). None of the treatments significantly affected settlement success of cyprids. These experiments show a remarkable tolerance of A. improvisus larvae to 1250 mu atm pCO(2), the level of OA predicted for the end of the century