Thermal niche of Atlantic cod Gadus morhua: limits, tolerance and optima

Recent studies in the marine environment have suggested that the limited phenotypic plasticity of cold-adapted species like Atlantic cod (Gadus morhua L.) will cause distributions to shift toward the poles in response to rising sea temperatures. Some cod stocks are predicted to collapse, but this re...

Full description

Bibliographic Details
Published in:Marine Ecology Progress Series
Main Authors: Righton, D. A., Andersen, K. H., Neat, F., Thorsteinsson, V., Steingrund, P., Svedäng, H., Michalsen, K., Hinrichsen, Hans-Harald, Bendall, V., Neuenfeldt, S., Wright, P., Jonsson, P., Huse, G., van der Kooij, J., Mosegaard, H., Hüssy, K., Metcalfe, J.
Format: Article in Journal/Newspaper
Language:English
Published: Inter Research 2010
Subjects:
Online Access:https://oceanrep.geomar.de/id/eprint/10571/
https://oceanrep.geomar.de/id/eprint/10571/1/m420p001.pdf
https://oceanrep.geomar.de/id/eprint/10571/4/m420p001_supp.pdf
https://doi.org/10.3354/meps08889
Description
Summary:Recent studies in the marine environment have suggested that the limited phenotypic plasticity of cold-adapted species like Atlantic cod (Gadus morhua L.) will cause distributions to shift toward the poles in response to rising sea temperatures. Some cod stocks are predicted to collapse, but this remains speculative because almost no information is available on the thermal tolerance of cod in its natural environment. We used electronic tags to measure the thermal experience of 384 adult Atlantic cod from eight different stocks found in the NE Atlantic. Over 100,000 days of data were collected in total. The data demonstrate that cod is an adaptable and tolerant species capable of surviving and growing in a wide range of temperate marine climates. Total thermal niche ranged from -1.5°C to 19°C; this range was narrower (1°C to 8°C) during the spawning season. Cod in each of the stocks studied had a thermal niche of approximately 12°C, but latitudinal differences in water temperature meant that cod in the warmer, southern regions experienced three times the degree days (~4000 DD year-1) than individuals from northern regions (~1200 DD year-1). Growth rates increased with temperature, reaching a maximum in those cod with a mean thermal history of between 8°C and 10°C. Our direct observations of habitat occupation suggest that adult cod will be able to tolerate warming seas but that cod populations may still be affected because the effects of marine climate change will impact cod at earlier life-history stages or via indirect effects on prey species.