Development of a bio-optical model for the Barents Sea to quantitatively link glider and satellite observations: A bio-optical model for the Barents Sea

A bio-optical model for the Barents Sea is determined from a set of in situ observations of inherent optical properties (IOPs) and associated biogeochemical analyses. The bio-optical model provides a pathway to convert commonly measured parameters from glider-borne sensors (CTD, optical triplet sens...

Full description

Bibliographic Details
Published in:Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Main Authors: Kostakis, I., Röttgers, R., Orkney, A., Bouman, H.A., Porter, M., Cottier, Finlo Robert, Berge, Jørgen, Mckee, David
Format: Article in Journal/Newspaper
Language:English
Published: The Royal Society 2020
Subjects:
Online Access:https://hdl.handle.net/11250/2729163
https://doi.org/10.1098/rsta.2019.0367
Description
Summary:A bio-optical model for the Barents Sea is determined from a set of in situ observations of inherent optical properties (IOPs) and associated biogeochemical analyses. The bio-optical model provides a pathway to convert commonly measured parameters from glider-borne sensors (CTD, optical triplet sensor—chlorophyll and CDOM fluorescence, backscattering coefficients) to bulk spectral IOPs (absorption, attenuation and backscattering). IOPs derived from glider observations are subsequently used to estimate remote sensing reflectance spectra that compare well with coincident satellite observations, providing independent validation of the general applicability of the bio-optical model. Various challenges in the generation of a robust bio-optical model involving dealing with partial and limited quantity datasets and the interpretation of data from the optical triplet sensor are discussed. Establishing this quantitative link between glider-borne and satellite-borne data sources is an important step in integrating these data streams and has wide applicability for current and future integrated autonomous observation systems. publishedVersion © 2020 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.