A Semi-Analytical Method for Calculating the Hydrodynamic Force on Perforated Plates in Oscillating Flow

A two-dimensional numerical analysis on the hydrodynamic force of perforated plates in oscillating flow is presented, and a new semi-analytical force model is proposed. Plates with ten different perforation ratios, τ, from 0.05 to 0.50 are simulated. The Keulegan–Carpenter numbers in the simulations...

Full description

Bibliographic Details
Published in:Volume 7A: Ocean Engineering
Main Authors: Mentzoni, Fredrik, Kristiansen, Trygve
Format: Book Part
Language:English
Published: ASME 2019
Subjects:
Online Access:http://hdl.handle.net/11250/2635243
https://doi.org/10.1115/OMAE2019-95093
Description
Summary:A two-dimensional numerical analysis on the hydrodynamic force of perforated plates in oscillating flow is presented, and a new semi-analytical force model is proposed. Plates with ten different perforation ratios, τ, from 0.05 to 0.50 are simulated. The Keulegan–Carpenter numbers in the simulations cover a range from 0.002 to 2.2 when made nondimensional with the width of the plates. Resulting hydrodynamic added mass and damping coefficients are presented. All perforated plates with perforation ratios greater than or equal to 10% are found to be damping dominant. The numerical results are obtained using a two-dimensional Navier–Stokes solver (CFD), previously validated against dedicated 2D experiments on perforated plates. Furthermore, we present verification of the code against the analytical solid flat plate results by Graham. The presently obtained hydrodynamic coefficients are compared with the state-of-the-art semi-analytical method for force coefficient calculation of perforated plates by Molin, as well as the recommended practice for estimating hydrodynamic coefficients of perforated structures by DNV GL. Based on the CFD results, a new method for calculating the hydrodynamic force on perforated plates in oscillating flow is presented. The method is based on curve fitting the present CFD results for perforated plates, to the analytical expressions obtained for solid plates by Graham. In addition to its simplicity, a strength of the method is that coefficients for both the added mass and damping are obtained. publishedVersion Copyright (C) 2019 by ASME