Hydro-Elastic Analysis of a Floating Bridge in Waves Considering the Effect of the Hydrodynamic Coupling and the Shore Sides

A new numerical method, which is based on three-dimensional (3D) potential flow theory and finite element method (FEM), is used to predict the wave-induced hydroelastic responses of flexible floating bridges. The floating bridge is discretized into several modules based on the positions of the ponto...

Full description

Bibliographic Details
Main Authors: Deng, Shi, Fu, Shixiao, Moan, Torgeir, Wei, Wei, Gao, Zhen
Format: Book Part
Language:English
Published: ASME 2018
Subjects:
Online Access:http://hdl.handle.net/11250/2585706
Description
Summary:A new numerical method, which is based on three-dimensional (3D) potential flow theory and finite element method (FEM), is used to predict the wave-induced hydroelastic responses of flexible floating bridges. The floating bridge is discretized into several modules based on the positions of the pontoons which are connected by elastic beams. The motion equations of the entire floating structure are established according to the six degrees of freedom (6DOF) motions of each rigid module coupled with the dynamics of the elastic beams. The hydrodynamics loads on each module are considered as external loads and simultaneously applied. The method is extended to take into account the shore side effect, which is obtained from the 3D potential flow theory and considered as a hydrodynamic boundary condition. The effects of inclination of shore side on the responses of the bending moment, horizontal and vertical displacements of the pontoon and their distribution along the bridge are investigated. The results show that the displacement response increase with an increasing steepness of the shore side. acceptedVersion © 2018. This is the authors' accepted and refereed manuscript to the article. The final authenticated version is available online at: http://dx.doi.org/10.1115/OMAE2018-78738