ENHANCED OIL RECOVERY FOR NORNE FIELD (STATOIL) C-SEGMENT USING ALKALINE-SURFACTANT-POLYMER FLOODING

A great percentage of oil is observed to be left in the reservoir after the traditional primary and secondary recovery methods. This oil is described as immobile oil. Alkaline-Surfactants are chemicals used to reduce the interfacial tension between the involved fluids, while polymer is used in makin...

Full description

Bibliographic Details
Main Author: Awolola, Kazeem Adetayo
Other Authors: Kleppe, Jon, Norges teknisk-naturvitenskapelige universitet, Fakultet for ingeniørvitenskap og teknologi, Institutt for petroleumsteknologi og anvendt geofysikk
Format: Master Thesis
Language:English
Published: Institutt for petroleumsteknologi og anvendt geofysikk 2012
Subjects:
Online Access:http://hdl.handle.net/11250/239831
Description
Summary:A great percentage of oil is observed to be left in the reservoir after the traditional primary and secondary recovery methods. This oil is described as immobile oil. Alkaline-Surfactants are chemicals used to reduce the interfacial tension between the involved fluids, while polymer is used in making the immobile oil mobile.Norne C-segment is in the decline stage and is facing considerable challenges regardingvolume of oil bye-passed due to water flooding. There is need for developing cost efficient enhanced oil recovery (EOR) methods that would be suitable for Norne fluid and rock properties and therefore improve sweep efficiency significantly. Based on literature and screening criteria, alkaline-surfactant-polymer can be used as an enhancing agent to produce extra oil and reduce water-cut significantly in the C-segment.The objective of this work is to evaluate the possibilities of using alkaline, surfactant and/or polymer to increase the oil recovery factor and prolong the production decline stage of Norne field. An initial study was conducted using heterogeneous synthetic models (with Norne Csegment fluids and rock properties) to assess the suitability of alkaline/surfactant/polymer (ASP) flooding. All the chemical cases simulated gave substantial incremental oil production and water-cut reduction. However, history matched Norne C-segment reservoir model was used to simulate alkalinesurfactant-polymer flooding using Eclipse 100. Appropriate chemical quantity for injection was ascertained by simulating several cases with different concentration, injection length and time of injection. Different sensitivity analyses were made and simulations revealed that the most effective method was not the most profitable. Having established most profitable method which was injecting ASP slug with a concentration of 7Kg/m3, 2Kg/m3 and 0.3Kg/m3 into C-3H (injector) for 4-years in a cyclic manner, an incremental recovery factor of 2.61% was recorded and Net Present Value (NPV) was calculated to be 1660 x103MNOK