I. 天然COX-2 抑制劑之結構修飾及活性研究; II. 高價碘對α,β-不飽和酮之氧化研究

本論文分為 I. 天然COX-2抑制劑之結構修飾及活性研究, II. 高價碘對α,β-不飽和酮之氧化研究。 I. 天然COX-2抑制劑之結構修飾及活性研究 雖然非固醇類消炎藥物(NSAIDs)目前是最廣泛的消炎藥物,但是仍然還有腸胃毒性等耐受性的問題,這主要是因為上述藥物對於兩種環氧化酶(Cyclooxygenase, COX-1, COX-2)沒有選擇性的抑制,而且研究顯示只抑制可誘發性的第二型環氧化酶(Cyclooxygenase-2,COX-2)可以避免此副作用。因此有釵h的研究朝這方面來發展更安全更有效率的消炎藥物。 本研究主要是從天然物中找尋具有可以抑制COX-2活性的天然衍生物作為...

Full description

Bibliographic Details
Main Authors: 李士霖, Lee, Su-lin
Other Authors: 陳春雄, 臺灣大學:藥學研究所
Format: Text
Language:Chinese
English
Published: 2004
Subjects:
Online Access:http://ntur.lib.ntu.edu.tw/handle/246246/55646
http://ntur.lib.ntu.edu.tw/bitstream/246246/55646/1/ntu-93-R91423005-1.pdf
Description
Summary:本論文分為 I. 天然COX-2抑制劑之結構修飾及活性研究, II. 高價碘對α,β-不飽和酮之氧化研究。 I. 天然COX-2抑制劑之結構修飾及活性研究 雖然非固醇類消炎藥物(NSAIDs)目前是最廣泛的消炎藥物,但是仍然還有腸胃毒性等耐受性的問題,這主要是因為上述藥物對於兩種環氧化酶(Cyclooxygenase, COX-1, COX-2)沒有選擇性的抑制,而且研究顯示只抑制可誘發性的第二型環氧化酶(Cyclooxygenase-2,COX-2)可以避免此副作用。因此有釵h的研究朝這方面來發展更安全更有效率的消炎藥物。 本研究主要是從天然物中找尋具有可以抑制COX-2活性的天然衍生物作為藥物設計的前導藥之模型,藉結構修飾及活性變化之研究及探討,希望能研發出具有臨床應用潛在性的藥物。 1. 先前有研究指出diarylheptanoid類的化合物oregonin (1)具有抑制COX-2的活性,而本實驗室也發現樺木科植物赤楊中具有這類的化合物。基於先前的研究以oregonin (1)作為前導藥,針對diarylheptanoid的3,5位置做不同的官能基修飾,進而研究結構變化與活性關係的探討。 以薑黃素(curcumin, 6)作為起始物,用不同條件的氫化反應可以得到各類還原態的產物。以diary- heptan-3-one為重要中間物,用還原性胺化反應製備出各diaryl-N-alkylheptan-3-amine。以上的產物的活性雖然大多不及oregonin (1)但還是可以用於研究結構活性關係。 2. 阿朴芬生物鹼具有抗心律不整、抑制乙醯膽鹼酶、抗發炎等活性。其部分結構特性與diarylbutanoid類似,因此擬製備其衍生物來研究這類化合物對於COX-2 之作用。 以波爾定鹼 (boldine, 56)做起始物,在N 6位置做開環反應可以得到次波爾定鹼 (secoboldine, 57),再用還原胺化反應在二級胺上接上不同的苯醛,可以得到一系列的三級胺生物鹼化合物。以上化合物將來也會用於研究COX-2抑制劑的結構活性關係。 II. 高價碘對α,β-不飽和酮之氧化研究 先前已有文獻指出用lead(IV)acetate-borontrifluoride etherate (LTA/BF3-Et2O)做氧化劑,可以經由一步的重組氧化反應把α,β-不飽和酮(α,β-unsaturated ketones)氧化成β,γ-不飽和碳酸酯(β,γ-unsaturated carboxylic acid esters)衍生物。根據我們實驗室的研究,高價碘氧化劑也具有類似的氧化能力,而且具有低毒性、易取得、處理方便及具有特殊反應的特性。 以不同取代的芳香醛(arylaldehyde)跟丙酮縮合後可以得到α,β-不飽和酮,再用iodosobenzene diacetate做氧化劑氧化,可以成左滷o到β,γ-不飽和碳酸酯類化合物。根據實驗結果我們提出這個特殊氧化反應的重排反應機制。 This thesis contains two parts entitled as following: I. Structural Modification and Activity of Natural COX-2 Inhibitors II. Oxidation of α,β-Unsaturated Ketones with Hypervalent Iodine Reagent I. Structural Modification and Activity of Natural COX-2 Inhibitors Although the NSAID are the most widely used and prescribed drugs world-wide for the treatment of inflammation, problems still remained concerning their tolerability, in particular, gastrointestinal irritation. The latter symptom is caused by the nonselective inhibition of both cyclooxygenases, COX-1 and COX-2, it has been demonstrated that selective COX-2 inhibitors could avoid such side effect. Hence, a lot of efforts have been made on the development of selective COX-2 inhibitors to achieve safer and efficacious anti-inflammatory agents. The purpose of this research is to explore the potential new drug leads by structural modification of several natural products that possess bioactivity against COX-2. 1. Recently oregonin (1), a diarylheptanoid, was reported to have activity against COX-2. Our previous studies found that Alnus formosana also contain such type of compounds. Based on origonin as a lead compound, a series of modifications on the 3, 5 position of diarylheptanoid structure have been carried out that provide various structures for study in SAR. Starting from curcumin (6), various kind of reductive state products were prepared by catalytic hydrogenation with different reaction conditions. Target product diaryl-N-alkylheptan-3-amines were prepared by diary-heptan-3-one through reductive amination. The preliminary bioactivity analysis of these products against COX-2 showed lower activity compared with oregonin (1), but the results still provide us informations regarding SAR and lead optimization. 2. Aprophine alkaloids possess anti-arrhythmic, anti-cholinesterase, and anti-inflammatory activities. Based on their similar structural pattern with diaryheptanoids, some chemical modifications will be carried out to provide some compounds similar to diarybutanoids, for further study in bioactivity against COX-2. Starting from boldine (56), secoboldine (57) was prepared by ring opening at N6 position. Then the resulting secondary amine, secoboldine (57), was treated with various substituted benzaldehydes, to form a series of diarybutanoid-like tertiary amine alkaloids. These products will be tested and explored for their SAR. II. Oxidation of α,β-Unsaturated Ketones with Hypervalent Iodine Reagent Literatures reported that lead (ΙV) acetate-borontrifluoride etherate (LTA/BF3-Et2O) can transform α,β-unsaturated ketone to β,γ-unsaturated carboxylic acid ester through an one-step oxidative rearrangement reaction. Our research along this line indicated that hypervalent iodine (III) reagents can also affect the same reaction. Hypervalent iodine (III) reagents have some unique properties, including low toxicity, ready availability, and easy handling, and can be applied to many useful transformations. Thus, α,β-unsaturated ketones were prepared by base-catalized aldol condensation between substituted arylaldehydes and acetones. Using iodosobenzene diacetate as oxidants, the resulting α,β-unsaturated ketones will be transformed to β,γ-unsaturated carboxylic acid esters. We also proposed a mechanism for the rearrangement concerning this particular oxidation. 總目錄 中文摘要 I 英文摘要 II 總目錄 IV 表目錄 (List of Tables) IX 流程圖目錄 (List of Schemes) X 圖及附圖目錄 (List of Figures and Spectra Appendices) XI 辭彙 (Glossary) XII I天然COX-2抑制劑之結構修飾及活性研究 1 壹、序論及研究目的 1 1.1非類固醇類消炎鎮痛劑與COX 1 1.2 COX-1 與 COX-2的弁鉬P分佈 1 1.3 已核准上市的COX-2選擇性抑制劑 4 1.4 以COX-2抑制劑來預防大腸直腸癌 4 1.5 研究目的 5 1.6 Diarylheptanoid 衍生物之活性研究 5 1.6.1 天然物中含diarylheptanoid類骨架的化合物 5 1.6.2薑黃素之結構修飾研究 7 1.7阿朴芬生物鹼之結構修飾研究 9 貳、結果與討論 11 2.1薑黃素之硎c修飾研究 11 2.1.1化合物 14, 15, 16, 及46之製備 11 2.1.2 Diarylheptylamines類化合物之製備 13 2.1.3化合物52d的製備 15 2.1.4化合物53與標的diarylheptylamine類化合物52a-g的製備 16 2.1.5 藥理活性研究 20 2.1.6 生物活性測試結論 25 2.2 阿朴芬類生物鹼的結構修飾研究 26 2.2.1次波爾定鹼雙元體之製備 26 2.2.2化合物60a-e的製備 28 2.3 結論 32 參. 實驗部份 33 3.1 儀器與器材 33 3.1.1 理化性質測定儀器 33 3.1.2 反應器 33 3.1.3成分分離之儀器及材料 33 3.1.4試劑、材料及溶劑 33 3.2化合物 (14), (15), (16), (46)之製備: 34 3.2.1 1,7-Bis(4-hydroxy-3-methoxy-phenyl)heptane-3,5-dione (Tetrahydrocurcumin, 14) 之製備 34 3.2.2 1,7-Bis(4-hydroxy-3-methoxy-phenyl)heptan-5-hydroxy -3-one (Hexahydrocurcumin, 15)之製備 35 3.2.3 1,7-Bis(4-hydroxy-3-methoxy-phenyl)heptan-3,5-diol (Octahydrocurcumin, 16)之製備 35 3.2.4 1,7-Bis-(4-hydroxy-3-methoxy-phenyl) 5-(propylamino)heptan-3-ol (46)之製備 36 3.3 Diarylheptanoid amines類化合物之製備 37 3.3.1 (1E,6E)-1,7-Bis(4-t-butyloxycarbonyloxy-3-methoxy-phenyl)-hepta-1,6-diene-3,5-dione 47之製備 37 3.3.2 1,7-Bis(4-t-butyloxycarbonyloxy-3-methoxy-phenyl)heptan-5-hydroxy-3-one 48之製備 38 3.3.3 1,7-Bis(4-t-butyloxycarbonyloxy-3-methoxy-phenyl)-5- oxoheptan-3-yl methanesulfonate 49之製備 38 3.4 1,7-Bis-(4-hydroxy-3-methoxy-phenyl)-N-propylheptan-3-amine 52d之合成研究 39 3.4.1 (E)-1,7-Bis(4-t-butyloxycarbonyloxy-3-methoxy-phenyl)hept-4-en-3-one 50之製備 39 3.4.2 1,7-Bis(4-t-butyloxycarbonyloxy-3-methoxy-phenyl)heptan-3-one 51之製備 40 3.4.3 1,7-Bis-(4-hydroxy-3-methoxy-phenyl)-N-propylheptan-3-amine 52d之製備 40 3.5 化合物53與diarylheptanylamine類化合物52a-g的製備 41 3.5.1 1,7-Bis-(4-hydroxy-3-methoxy-phenyl)-heptan-3-one (53)之製備 41 3.5.2 1,7-Bis(4-benzyloxy-3-methoxy-phenyl)heptan-3-one 54之製備 41 3.5.3 N-Benzyl-1,7-bis(4-benzyloxy-3-methoxy-phenyl)heptan-3-amine 55a之製備 42 3.5.4 1,7-Bis-(4-benzyloxy-3-methoxy-phenyl)-N-ethylheptan-3-amine 55b之製備 43 3.5.5 N-Ethyl-1,7-bis-(4-benzyloxy-3-methoxy-phenyl)-heptan-3-amine 55c之製備 44 3.5.6 1,7-Bis-(4-benzyloxy-3-methoxy-phenyl)-N-propylheptan-3-amine 55d之製備 45 3.5.7 1,7-Bis-(4-benzyloxy-3-methoxy-phenyl)-N-isobutylheptan-3-amine 55e之製備 45 3.5.8 N-Butyl-1,7-bis-(4-benzyloxy-3-methoxy-phenyl)heptan-3-amine 55f之製備 46 3.5.9 1,7-Bis-(4-hydroxy-3-methoxy-phenyl)-heptan-3-amine (52a)之製備 47 3.5.10 1,7-Bis-(4-hydroxy-3-methoxy-phenyl)-N-methylheptan-3-amine (52b)之製備 48 3.5.11 N-Ethyl-1,7-bis-(4-hydroxy-3-methoxy-phenyl)-heptan-3-amine 52c之製備 48 3.5.12 1,7-Bis-(4-hydroxy-3-methoxy-phenyl)-N-propylheptan-3-amine (52d)之製備 49 3.5.13 1,7-Bis-(4-hydroxy-3-methoxy-phenyl)-N-isobutylheptan-3-amine (52e)之製備 50 3.5.14 N-Butyl-1,7-bis-(4-hydroxy-3-methoxy-phenyl)heptan-3-amine (52f)之製備 51 3.5.15 N-Cyclopropyl-1,7-bis-(4-hydroxy-3-methoxy-phenyl)heptan-3-amine (52g)之製備 52 3.6 次波爾定鹼雙元體之製備 53 3.6.1 Secoboline (57) 之製備 53 3.6.2 Diisoproxyboldine 58之製備 53 3.6.3 Boldine diacetate 59之製備 54 3.7 N-alkylsecoboldine 60a-e的製備 54 3.7.1 N-(3-Hydroxy-4-methoxy-benzyl)secoboldine 60a之製備 54 3.7.2 N-(4-Methoxy-benzyl)secoboldine 60b之製備 55 3.7.3 N-Propylsecoboldine 60d之製備 56 3.7.4 N-Isopropylsecoboldine 60e之製備 57 3.7.5 1-((2-Methoxyphenoxy)methyl)benzene 62之製備 58 3.7.6 N-(4-Benzyloxy-3-methoxy-benzyl)secoboldine 63之製備 58 3.7.7 N-(4-Hydroxy-3-methoxy-benzyl)secoboldine 60c之製備 59 3.8 生物活性測試 60 3.8.1 PGE2 產量之測定 60 3.8.2 轉染 ( transfection ) 60 3.8.3 西方點墨法 60 3.8.3.1 細胞抽取物之製備 60 3.8.3.2 蛋白質轉印 61 3.8.3.3 免疫染色法 61 3.8.4 Nitrite 產量之測定 61 3.8.5 細胞存活測定 62 3.8.6 Lactate dehydrogenase (LDH) 釋放的測定 62 II高價碘對α,β-不飽和酮之氧化研究 63 壹、序論及研究目的 63 1.1 β, γ-不飽和酸酯的合成 63 1.2 高價碘氧化劑之應用 64 1.2.1 Iodosylbenzene 之研究與應用 65 1.2.2 Iodosobenzene diacetate 之氧化研究 66 1.3 研究目的 67 貳、結果與討論 68 2.1 Iodosobenzene diacetate 之製備 68 2.2 4-Aryl-3-buten-2-one (71a-i) 之製備 68 2.3 化合物72a, b, d, e, f, g, i之製備 69 2.4 氧化重排反應之作用機轉 71 2.5 實驗結果與文獻之比較 71 參、實驗部份 73 3.1 儀器與器材 73 3.1.1 理化性質測定儀器 73 3.1.2 成分分離之儀器及材料 73 3.1.3 試劑、材料及溶劑 73 3.2 Iodosobenzene diacetate 之製備 74 3.3 4-Aryl-3-buten-2-one (71a-i) 之製備 74 3.3.1 4-Phenyl-3-buten-2-one 71a之製備 74 3.3.2 4-(4-Methoxy-phenyl)-3-buten-2-one 71b之製備 74 3.3.3 4-(3,4-Methylenedioxyphenyl)-3-buten-2-one 71c之製備 75 3.3.4 4-(4-Chlorophenyl)-3-buten-2-one 71d之製備 75 3.3.5 4-(3-Bromo-4-methoxyphenyl)-3-buten-2-one 71e之製備 76 3.3.6 4-(2-Thiophenyl)-3-buten-2-one 71f之製備 76 3.3.7 4-(2-Furyl)-3-buten-2-one 71g之製備 77 3.3.8 4-(4-Nitrophenyl)-3-buten-2-one 71h 之製備 77 3.3.8.1 4-Hydroxy-4-(4-nitrophenyl)-2-butanone 71h′ 77 3.3.8.2 4-(4-Nitrophenyl)-3-buten-2-one 71h之製備 78 3.3.9 4-(3-Nitrophenyl)-3-buten-2-one 71i 之製備 78 3.4 化合物72a, b, d, e, f, g, i之製備: 79 3.4.1 4-Phenyl-3-butenoic acid methyl ester (72a)之製備 79 3.4.2 4-(4-Methoxyphenyl)-3-butenoic acid methyl ester (72b)之製備 79 3.4.3 4-(4-Chlorophenyl)-3-butenoic acid methyl ester (72d)之製 80 3.4.4 4-(3-Bromo-4-methoxyphenyl)-3-butenoic acid methyl ester (72e)之製備 80 3.4.5 4-(2-Thiophenyl)-3-butenoic acid methyl ester (72f)之製備 81 3.4.6 4-(4-Nitrophenyl)-3-butenoic acid methyl ester (72h)之製備 82 3.4.7 4-(3-Nitrophenyl)-3-butenoic acid methyl ester (72i)之製備 82 參考文獻 84