投落送資料對颱風路徑模擬評估研究─康森及米雷颱風個案分析

颱風的生成及發展主要是發生於觀測資料稀少的海洋上,在缺乏對颱風結構及環境駛流場解析的情況下,欲增加對動力颱風的瞭解及增進數值模式初始場的準確性,一直是颱風研究急待解決的問題之一。 有鑑於美國對於投落送觀測任務累積多年之經驗以及相關研究成果,並為增加西北太平洋地區颱風周遭環境大氣資料之觀測,自2003年起台灣地區正式展開侵台颱風之GPS 投落送飛機偵察觀測實驗,簡稱為「追風計畫」(Dropwindsonde Observations for Typhoon Surveillance near the TAiwan Region, DOTSTAR) (Wu et al. 2005),針對可能侵襲台...

Full description

Bibliographic Details
Main Authors: 黃葳芃, Huang, Wei-Peng
Other Authors: 吳俊傑, 臺灣大學:大氣科學研究所
Format: Thesis
Language:Chinese
English
Published: 2006
Subjects:
MM5
Online Access:http://ntur.lib.ntu.edu.tw/handle/246246/49974
http://ntur.lib.ntu.edu.tw/bitstream/246246/49974/1/ntu-95-D88229001-1.pdf
Description
Summary:颱風的生成及發展主要是發生於觀測資料稀少的海洋上,在缺乏對颱風結構及環境駛流場解析的情況下,欲增加對動力颱風的瞭解及增進數值模式初始場的準確性,一直是颱風研究急待解決的問題之一。 有鑑於美國對於投落送觀測任務累積多年之經驗以及相關研究成果,並為增加西北太平洋地區颱風周遭環境大氣資料之觀測,自2003年起台灣地區正式展開侵台颱風之GPS 投落送飛機偵察觀測實驗,簡稱為「追風計畫」(Dropwindsonde Observations for Typhoon Surveillance near the TAiwan Region, DOTSTAR) (Wu et al. 2005),針對可能侵襲台灣地區的颱風進行投落送觀測任務。根據2004年至2005年所有投落送資料的綜合評估顯示,同化投落送資料可以使得美國全球預報系統 (NCEP GFS) 及日本氣象廳全球波譜模式 (JMA-GSM) 0至72小時平均颱風預報路徑誤差分別改進16%及24%,而考慮此兩個全球模式之系集預報,可達18%的改進 (Wu et al. 2006a)。 根據之前美國的研究成果以及台灣地區追風計畫的初步結果顯示,數值模式在加入投落送資料後於統計上可有效提升對颱風路徑預報之能力,但造成改進的原因及許多科學問題尚未被深入探討。因此本研究選取2004年加入投落送資料後預報路徑產生較大差異的康森 (Conson) 颱風以及米雷 (Meari) 颱風為探討個案,以MM5 3DVAR資料同化系統進行投落送資料對模式初始場及後續路徑模擬的影響評估,並透過敏感度實驗以進行影響探討。 研究結果顯示,針對康森颱風及米雷颱風加入投落送資料進行資料同化後對模擬路徑的整體改進分別為56%及63%。由初始場的深層平均 (950-200 hPa) 差異則可發現有無同化投落送資料風場的量值差異可達6-7 m s-1,可見投落送資料在這兩個個案的影響相當顯著。此外,藉由位渦反演診斷可以瞭解,造成加入同化投落送資料實驗之模擬颱風路徑改變的主因,在康森颱風個案貢獻最大的是位於由台灣東北方延伸至西南方的正位渦距平;在米雷颱風個案貢獻最大的則是伴隨位於台灣北方海面的正位渦距平及位於颱風中心東南方的負位渦距平。 本研究亦針對康森颱風及米雷颱風進行影響實驗研究 (impact study) ,目的在於瞭解同化投落送資料的水平與垂直分佈以及不同變數對颱風運動的影響、台灣地形扮演的角色、渦旋植入及不同資料同化系統的影響。針對康森颱風的研究結果顯示,所有投落送資料中位於西邊的6枚資料對颱風模擬路徑的影響較大,且由於模擬之颱風強度較弱因此投落送之中低層(400 hPa以下)的資料對路徑模擬的正面影響較顯著。如將投落送資料的變數分為兩組進行同化實驗則可發現,投落送資料對於MM5模式之颱風路徑模擬的改進幾乎完全是反應其風場觀測之影響。相對的,高度場、溫度場及濕度場幾乎無任何影響,這及Wu et a. (2006a) 皆是文獻上首次比較投落送所取得運動場及質量場資料對於颱風路徑模擬影響相對貢獻的研究工作,並與Wu et al. (2006 b) 有關颱風初始渦旋資料之運動場及質量場對於颱風強度模擬的相對角色研究結果相當一致。上述結果對於未來新投落送設計亦具參考價值。 至於台灣地形在康森颱風個案中對颱風路徑造成的改變程度較有無同化投落送資料造成的改變程度為小,顯示台灣地形在此個案中並不是造成颱風移動方向改變的重要因子。如為改進對初始渦旋結構的描述再配合上渦旋植入 (bogus) 則可使模擬路徑更加改進至70%。此外,不同資料同化方法的影響也相當顯著,如使用較為簡單的Cressman方法同化相同之投落送資料,整體改進就只有13%,由此可見欲得到較佳之數值模擬結果除觀測資料的增加外所採用的資料同化方法也是重要的關鍵之一。 米雷颱風影響實驗的結果與康森颱風個案約略一致,其中值得探討的問題在於渦旋植入實驗的結果。在此個案中僅進行渦旋植入而未同化投落送資料就路徑可有54%的改進,而僅同化投落送資料未植入颱風,也可以有63%的改進。但是當同時加入投落送資料及進行渦旋植入時,模擬結果卻比兩者個別進行時的結果差,僅有30%的改進。此突顯出結合渦旋植入過程與同化投落送資料時,須考量可以反映颱風內部結構及保有周圍投落送觀測兩者兼具的方法,投落送資料的訊息才不會被植入渦旋之人工資料所汙染。關於這個議題,Chou and Wu (2006) 針對如何適當結合植入之渦旋與同化投落送資料已有深入的探討。 未來在颱風觀測資料方面,日本自2008年起也將配合THORPEX/PARC (THe Observing system Research and Predictability EXperiment / Pacific Asian Regional Campaign) 進行颱風投落送觀測實驗,因此西北太平洋區域的投落送資料將可以增加。此外,根據過去的研究顯示,同化QuikSCAT海表面風、衛星雲導風、以及Aqua Modis的探空資料等,可以改進對於熱帶氣旋路徑的預報以及增進對熱帶氣旋結構的描述 (Leslie et al. 1998, Goerss et al. 1998, Zhang et al. 2006)。因此未來將嘗試整合投落送資料與遙測資料例如衛星風場、QuikSCAT海表面風、雷達資料以及FORMOSAT-3/COSMIC的GPS/MET (Wu et al. 2000) 等資料進行同化,此為未來值得持續突破之焦點。 在資料同化方法的發展方面,由本研究的結果可以發現使用不同資料同化方法對模式初始場及後續預報的影響也扮演重要角色。未來在計算資源的持續發展下,以四維變分資料同化(Zou et al. 1997;Rabier et al. 2000) 或是系集卡曼濾波器 (ensemble Kalman filter) (Houtekamer and Mitchell 1998; Anderson 2001) 進行資料同化將是未來值得深入研究的課題。 目 錄 摘要……………………………………………………………….Ⅰ 誌謝………………………………………………………………………….Ⅳ 目錄………………………………………………………………………….Ⅴ 圖表目錄…………………………………………………………………….Ⅸ 第一章 前言與研究方法……………………………………………………1 1.1 前言……………………………………………………………………….1 1.2 研究目的………………………………………………………………….8 第二章 研究策略與工具…………………………………………………10 2.1 研究策略…………………………………………………………………10 2.2 投落送資料………………………………………………………………10 2.3 研究工具…………………………………………………………………12 2.3.1 MM5模式…………………………………………………………12 2.3.2 MM5 3DVAR資料同化系統……………………………………12 2.3.3 位渦反演原理及方法…………………………………………….18 第三章 模式設定及實驗設計……………………………………………….20 3.1 MM5模式設定………………………………………………………….20 3.2 實驗設計…………………………………………………………………20 第四章 資料同化結果及模擬結果分析……………………….……………24 4.1 康森颱風個案……………………………………………………………24 4.1.1投落送風場資料與模式初始風場的比較………………………24 4.1.2 有無同化投落送資料之實驗結果比較…………………………25 4.1.2.1 初始場之改變及路徑模擬結果…………………………25 4.1.2.2 位渦反演診斷……………………………………………26 4.1.2.3 模擬結果差異…………………………………….……….27 4.2 米雷颱風個案……………………………………………………………29 4.2.1投落送風場資料與模式初始風場的比較………………………29 4.2.2 有無同化投落送資料之實驗結果比較…………………………30 4.2.2.1 初始場之改變及路徑模擬結果…………………………30 4.2.2.2 位渦反演診斷……………………………………………31 4.2.2.3 模擬結果差異…………………………………….……….32 第五章 影響實驗結果討論…………………………………………………34 5.1 康森颱風個案……………………………………………………………34 5.1.1 投落送資料分佈的探討…………………………………………34 5.1.1.1 水平分佈的影響…………………………………………34 5.1.1.2垂直分佈的影響…………………………………………38 5.1.1.3不同變數的影響…………………………………………40 5.1.2 MM5 3DVAR系統設定測試……………………………………41 5.1.2.1 觀測誤差的敏感性………………………………………41 5.1.2.2 遞推濾波器的敏感性………….…………………………43 5.1.3 資料同化方法的影響評估………………………………………45 5.1.3.1 Cressman資料同化方法的影響…………………………45 5.1.3.2 NCEP GDAS資料同化系統的影響………………………46 5.1.4 其他因子的影響探討……………………………………………47 5.1.4.1 台灣地形的影響…………………………………………47 5.1.4.2 渦旋植入的影響…………………………………………48 5.1.4.3 WRF模式及WRF 3DVAR同化系統的影響……………50 5.1.5 康森颱風個案小結………………………………………………51 5.2 米雷颱風個案……………………………………………………………54 5.2.1 投落送資料分佈探討……………………………………………54 5.2.1.1水平分佈的影響…………………………………………54 5.2.1.2垂直分佈的影響…………………………………………57 5.2.1.3不同變數的影響…………………………………………59 5.2.2 MM5 3DVAR系統設定測試……………………………………60 5.2.2.1 觀測誤差的敏感性………………………………………60 5.2.2.2 遞推濾波器的敏感性……………………………………61 5.2.3 資料同化方法的影響評估………………………………………62 5.2.3.1 Cressman資料同化方法的影響…………………………62 5.2.3.2 NCEP GDAS資料同化系統的影響………………………63 5.2.4 其他因子的影響探討……………………………………………64 5.2.4.1 渦旋植入的影響…………………………………………64 5.2.4.2 WRF模式及WRF 3DVAR資料同化系統的影響………67 5.2.5 米雷颱風個案小結………………………………………………70 第六章 結論及未來展望……………………………………………………73 6.1 科學問題…………………………………………………………………73 6.2 主要發現…………………………………………………………………74 6.3 問題討論…………………………………………………………………78 6.4 未來展望…………………………………………………………………79 附錄一 MM5 3DVAR背景誤差的計算……………………………………81 附錄二 Cressman 逐步訂正法…………………………………………….82 附錄三 MM5模式之渦旋植入方法……………………………………….84 參考文獻…………………………………………………………………….86 附圖…………………………………………………………………………95