Ice triaxial deformation and fracture

An experimental investigation into the mechanical behaviour of polycrystalline ice in triaxial compression has been conducted using conditions generally favourable to brittle fracture and microcracking. Under triaxial stresses at high strain rate, ice failure occurs by abrupt shear fracturing, gener...

Full description

Bibliographic Details
Main Authors: Rist, M. A., Murrell, S. A. F.
Format: Article in Journal/Newspaper
Language:unknown
Published: 1994
Subjects:
Online Access:https://nrc-publications.canada.ca/eng/view/object/?id=ecbb99a7-ff9d-4868-9f7b-b5cd0d396abd
https://nrc-publications.canada.ca/fra/voir/objet/?id=ecbb99a7-ff9d-4868-9f7b-b5cd0d396abd
Description
Summary:An experimental investigation into the mechanical behaviour of polycrystalline ice in triaxial compression has been conducted using conditions generally favourable to brittle fracture and microcracking. Under triaxial stresses at high strain rate, ice failure occurs by abrupt shear fracturing, generally inclined at about 45° to the maximum principal stress. At -20°C, such failure is suppressed by the imposition of a small confining pressure, allowing a transition to ductile-type flow accompanied by distributed microcracking, but at -40°C shear fracture persists under confinement of up to at least 50 mPa. For low confining pressures (<10 MPa), brittle strength is strongly pressure-dependent; above this it is pressure-independent. Evidence is presented that suggests this may reflect a change from a fracture process influenced by friction to fracture initiated by localized yielding. Peer reviewed: Yes NRC publication: Yes