Contrasting two major Arctic coastal polynyas: the role of sea ice in driving diel vertical migrations of zooplankton in the Laptev and Beaufort Seas

The diel vertical migration (DVM) of zooplankton is one of the largest species migrations to occur globally and is a key driver of regional ecosystems and the marine carbon pump. Previously thought to be hampered by the extreme light regime prevailing in the Arctic Ocean, observations have revealed...

Full description

Bibliographic Details
Main Authors: Dmitrenko, Igor, Petrusevich, Vladislav, Preußer, Andreas, Kosobokova, Ksenia, Bouchard, Caroline, Geoffroy, Maxime, Komarov, Alexander, Babb, David, Kirillov, Sergei, Barber, David
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2024
Subjects:
Online Access:https://doi.org/10.5194/egusphere-2024-1637
https://noa.gwlb.de/receive/cop_mods_00074073
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00072205/egusphere-2024-1637.pdf
https://egusphere.copernicus.org/preprints/2024/egusphere-2024-1637/egusphere-2024-1637.pdf
Description
Summary:The diel vertical migration (DVM) of zooplankton is one of the largest species migrations to occur globally and is a key driver of regional ecosystems and the marine carbon pump. Previously thought to be hampered by the extreme light regime prevailing in the Arctic Ocean, observations have revealed that DVM does occur in ice-covered Arctic waters and suggest the decline in Arctic sea ice may thereby impact DVM and its role in the Arctic ecosystem. However, coastal polynyas present a unique environment where open water or thin, nearly translucent, ice prevail when offshore winds advect the ice pack away from the coast, allowing light into the surface waters and potentially disrupting DVM. Here, four yearlong time series of acoustic backscatter collected by moored acoustic Doppler current profilers at two opposite sides of the circumpolar polynya system at the Laptev Sea shelf (2007–08) and the Beaufort Sea shelf (2005–06) were used to examine the annual cycle of acoustic scattering, and therefore the annual cycle of DVM in these areas. The acoustic time series were used along with atmospheric and oceanic reanalysis and satellite data to interpret the results. Our observations show that DVM started to occur once the ice-free surface or under-ice layer irradiance exceeds a certain threshold (from ~0.3 to 3.3 lux), which is about two to ten times lower in the Beaufort Sea compared to the Laptev Sea. In the Laptev Sea, DVM does not occur during polar night, while civil twilight in the Beaufort Sea is sufficient to trigger DVM through polar night. This difference in DVM between the Laptev and Beaufort Seas is not entirely assigned to the 3° difference in latitude between the mooring positions, but also to the different light threshold required to trigger DVM, different zooplankton communities' composition, and potentially different depths and predation pressure. We find examples in both the Laptev and Beaufort Seas where the formation of polynyas and large leads caused DVM to abruptly cease or be disrupted, which we ...