Water masses in the Atlantic Ocean: water mass ages and ventilation

The distribution of water masses, and the ventilation rates of these, are of significance to the thermohaline circulation and biogeochemistry of the world oceans. The distribution of the main water masses in the Atlantic Ocean is published in a companion study (Liu and Tanhua, 2021), their ages and...

Full description

Bibliographic Details
Main Authors: Liu, Mian, Tanhua, Toste
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2024
Subjects:
Online Access:https://doi.org/10.5194/egusphere-2024-1362
https://noa.gwlb.de/receive/cop_mods_00073788
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00071933/egusphere-2024-1362.pdf
https://egusphere.copernicus.org/preprints/2024/egusphere-2024-1362/egusphere-2024-1362.pdf
Description
Summary:The distribution of water masses, and the ventilation rates of these, are of significance to the thermohaline circulation and biogeochemistry of the world oceans. The distribution of the main water masses in the Atlantic Ocean is published in a companion study (Liu and Tanhua, 2021), their ages and ventilation time-scales are reported here by using observations of the transient tracers, CFC-12 and SF6. Two different definitions of water mass ages are presented; the mean-age representing an average age of a water mass, and the mode-age that better represents the advective time-scale. In general, ages increase with pressure and along the pathway of a water mass. The central waters in the upper layer obtain the mean-ages of up to ~100 years and the mode-ages of up to ~30 years. In the intermediate layer, the Antarctic Intermediate Water (AAIW) and the Mediterranean Water (MW) show gradients of water mass ages in the meridional and zonal direction respectively. The AAIW obtains the highest mean-age of ~300 years and mode-age of ~80 years at 30° N, while the MW shows the highest mean-age of ~400 years and mode-age of ~100 years in the equator region. As the dominant water mass in the deep and overflow layer, the North Atlantic Deep Water (NADW) from high northern latitudes obtains the highest mean-age of ~600 years and mode-age of ~100 years in the Antarctic Circumpolar Current (ACC) region at 50° S. In the bottom layer, the Antarctic Bottom Water (AABW) from the Weddell Sea obtains the highest mean-age of ~600 years and mode-age of ~100 years in the equator. As the continuation of AABW, the Northeast Atlantic Bottom Water (NEABW) obtains the highest mean-age of ~800 years and mode-age of ~120 years at 50° N. The mode-age increases with the transport distance from formation area, accompanied by significant differences between the eastern and western basins. The mode-age is used to calculate the oxygen utilization rate (OUR) with apparent oxygen utilization (AOU) during the active transport in water masses. The ...