Ice mélange melt drives changes in observed water column stratification at a tidewater glacier in Greenland

Glacial fjords often contain ice mélange, a frozen conglomeration of icebergs, brash ice, and sea ice, that have been postulated to influence both glacier dynamics and fjord circulation through coupled mechanical and thermodynamic processes. Ice mélange meltwater can alter stratification of the wate...

Full description

Bibliographic Details
Main Authors: Abib, Nicole, Sutherland, David A., Peterson, Rachel, Catania, Ginny, Nash, Jonathan D., Shroyer, Emily L., Stearns, Leigh A., Bartholomaus, Timothy C.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2024
Subjects:
Online Access:https://doi.org/10.5194/egusphere-2024-504
https://noa.gwlb.de/receive/cop_mods_00072411
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00070626/egusphere-2024-504.pdf
https://egusphere.copernicus.org/preprints/2024/egusphere-2024-504/egusphere-2024-504.pdf
Description
Summary:Glacial fjords often contain ice mélange, a frozen conglomeration of icebergs, brash ice, and sea ice, that have been postulated to influence both glacier dynamics and fjord circulation through coupled mechanical and thermodynamic processes. Ice mélange meltwater can alter stratification of the water column by releasing cool, fresh water across a range of depths in the upper layer of the fjord. This meltwater input can subsequently modify the depth at which the subglacial discharge plume reaches neutral buoyancy and therefore the underlying buoyancy-driven fjord circulation and heat exchange with warm ocean shelf waters. Despite a spate of recent modelling studies exploring these proposed feedbacks, we lack in situ observations quantifying changes to the water column induced by ice mélange meltwater. Here we use a novel dataset collected before and after the melt, breakup, and down-fjord transport of an ephemeral ice mélange in front of Kangilliup Sermia (Rink Isbræ) to directly investigate the extent to which ice mélange meltwater can modify glacier-adjacent water properties. We find that even a short-lived ice mélange (4 days) can cause substantial cooling (0.18 °C) and freshening (0.25 g kg-1) of the water column that leads to stratification change down to the depth of the outflowing discharge plume. We compare our observations to an adjacent fjord, Kangerlussuup Sermia, where ice mélange seldom forms in the summertime, and show that the presence or absence of ice mélange melt creates fundamental differences in their upper layer hydrography. These observations provide critical constraints for recent modelling studies that have suggested ice mélange meltwater needs to be included in ocean circulation models for glaciers with deep grounding lines and high ice fluxes, which are precisely the glaciers exhibiting the largest magnitude terminus retreats at present.