Long-term legacy of phytoremediation on plant succession and soil microbial communities in petroleum-contaminated sub-Arctic soils

Phytoremediation can be a cost-effective method of restoring contaminated soils using plants and associated microorganisms. Most studies follow the impacts of phytoremediation solely across the treatment period and have not explored long-term ecological effects. In 1995, a phytoremediation study was...

Full description

Bibliographic Details
Main Authors: Leewis, Mary-Cathrine, Kasanke, Christopher, Uhlik, Ondrej, Leigh, Mary Beth
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2023
Subjects:
Online Access:https://doi.org/10.5194/egusphere-2023-2097
https://noa.gwlb.de/receive/cop_mods_00070611
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00068956/egusphere-2023-2097.pdf
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-2097/egusphere-2023-2097.pdf
Description
Summary:Phytoremediation can be a cost-effective method of restoring contaminated soils using plants and associated microorganisms. Most studies follow the impacts of phytoremediation solely across the treatment period and have not explored long-term ecological effects. In 1995, a phytoremediation study was initiated near Fairbanks, Alaska, to determine how the introduction of annual grasses and/or fertilizer would influence degradation of petroleum hydrocarbons (PHCs). After one year, grass and/or fertilizer treated soils showed greater decreases in PHC concentrations compared to untreated plots. The site was then left for 15 years with no active site management. In 2011, we re-examined the site to explore the legacy of phytoremediation on contaminant disappearance, as well as plant and soil microbial ecology. We found that the recruited vegetation, along with current bulk soil microbial community structure and function were all heavily influenced by initial phytoremediation treatment. The number of diesel-degrading microorganisms (DDM) was positively correlated with increasing amounts of vegetation on the site, and inversely correlated with PHC concentrations. Even 15 years later, the initial use of fertilizer had significant effects on microbial biomass and microbial community structure activities. We conclude that phytoremediation treatment has long-term, legacy effects on the plant community, which, in turn, impacts microbial community structure, function, and continued TPH disappearance. It is therefore important to consider phytoremediation strategies that not only influence site remediation rates in the short-term, but that also prime the site for restoration of vegetation across the long-term.