Changing sources and burial of organic carbon in the Chukchi Sea sediments with retreating sea ice over recent centuries

Decreasing sea ice extent in summer caused by climate change is affecting the carbon cycle of the Arctic Ocean. In this study, surface sediments across the western Arctic Ocean are investigated to characterize sources of sedimentary organic carbon (OC). Bulk organic parameters (total organic carbon,...

Full description

Bibliographic Details
Main Authors: Su, Liang, Ren, Jian, Sicre, Marie-Alexandrine, Bai, Youcheng, Zhao, Ruoshi, Han, Xibing, Li, Zhongqiao, Jin, Haiyan, Astakhov, Anatolii S., Shi, Xuefa, Chen, Jianfang
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2023
Subjects:
Online Access:https://doi.org/10.5194/egusphere-2023-64
https://noa.gwlb.de/receive/cop_mods_00064542
https://egusphere.copernicus.org/preprints/egusphere-2023-64/egusphere-2023-64.pdf
Description
Summary:Decreasing sea ice extent in summer caused by climate change is affecting the carbon cycle of the Arctic Ocean. In this study, surface sediments across the western Arctic Ocean are investigated to characterize sources of sedimentary organic carbon (OC). Bulk organic parameters (total organic carbon, total nitrogen, δ13Corg and δ15N) combined with molecular organic biomarkers (e.g., sterols and highly branched isoprenoids (HBIs)) are applied to distinguish between sympagic, pelagic, and terrestrial OC. Furthermore, downcore profiles of these parameters were also generated from the Chukchi Sea R1 core (74° N) to evaluate changes in the relative contribution of these three components of sedimentary OC over the last 200 years with decreasing sea ice. Our data evidence that from 1820s to 1930s, prevailing high and variable sea ice cover inhibited in situ primary production resulting in prominent land-derived material stored in sediments. From 1930s to 1980s, with the gradual decline of sea ice, primary production increased progressively. The ratio of sympagic and pelagic OC began to rise to account for a larger portion of sedimentary OC. Since 1980s, accelerated sea ice loss led to enhanced primary production, stabilizing over the last decades due to freshwater induced surface ocean stratification in summer.