Simulating ice segregation and thaw consolidation in permafrost environments with the CryoGrid community model

The ground ice content in cold environments influences the permafrost thermal regime and the thaw trajectories in a warming climate, especially for very ice-rich soils. Despite their importance, the amount and distribution of ground ice are often unknown due to lacking field observations. Hence, mod...

Full description

Bibliographic Details
Main Authors: Aga, Juditha, Boike, Julia, Langer, Moritz, Ingeman-Nielsen, Thomas, Westermann, Sebastian
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2023
Subjects:
Ice
Online Access:https://doi.org/10.5194/egusphere-2023-41
https://noa.gwlb.de/receive/cop_mods_00064489
https://egusphere.copernicus.org/preprints/egusphere-2023-41/egusphere-2023-41.pdf
Description
Summary:The ground ice content in cold environments influences the permafrost thermal regime and the thaw trajectories in a warming climate, especially for very ice-rich soils. Despite their importance, the amount and distribution of ground ice are often unknown due to lacking field observations. Hence, modelling the thawing of ice-rich permafrost soils and associated thermokarst is challenging as ground ice content has to be prescribed in the model set-up. In this study, we present a model scheme, which is capable of forming segregated ice during a model spin-up together with associated ground heave. It provides the option to add a constant sedimentation rate throughout the simulation. Besides ice segregation, it can represent thaw consolidation processes and ground subsidence under a warming climate. The computation is based on soil mechanical processes, soil hydrology by Richards equation and soil freezing characteristics. The code is implemented in the CryoGrid community model (version 1.0), a modular land surface model for simulations of the ground thermal regime. The simulation of ice segregation and thaw consolidation with the new model scheme allows us to analyze the evolution of ground ice content in both space and time. To do so, we use climate data from two contrasting permafrost sites to run the simulations. Several influencing factors are identified, which control the formation and thaw of segregated ice. (i) Model results show that high temperature gradients in the soil as well as moist conditions support the formation of segregated ice. (ii) We find that ice segregation increases in fine-grained soils and that especially organic-rich sediments enhance the process. (iii) Applying external loads suppresses ice segregation and speeds up thaw consolidation. (iv) Sedimentation leads to a rise of the ground surface and the formation of an ice-enriched layer whose thickness increases with sedimentation time. We conclude that the new model scheme is a step forward to improve the description of ground ice ...