Including vegetation dynamics in an atmospheric chemistry-enabled general circulation model: linking LPJ-GUESS (v4.0) with the EMAC modelling system (v2.53)
Central to the development of Earth system models (ESMs) has been the coupling of previously separate model types, such as ocean, atmospheric, and vegetation models, to address interactive feedbacks between the system components. A modelling framework which combines a detailed representation of thes...
Published in: | Geoscientific Model Development |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2020
|
Subjects: | |
Online Access: | https://doi.org/10.5194/gmd-13-1285-2020 https://noa.gwlb.de/receive/cop_mods_00050963 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00050620/gmd-13-1285-2020.pdf https://gmd.copernicus.org/articles/13/1285/2020/gmd-13-1285-2020.pdf |
Summary: | Central to the development of Earth system models (ESMs) has been the coupling of previously separate model types, such as ocean, atmospheric, and vegetation models, to address interactive feedbacks between the system components. A modelling framework which combines a detailed representation of these components, including vegetation and other land surface processes, enables the study of land–atmosphere feedbacks under global climate change. Here we present the initial steps of coupling LPJ-GUESS, a dynamic global vegetation model, to the atmospheric chemistry-enabled atmosphere–ocean general circulation model EMAC. The LPJ-GUESS framework is based on ecophysiological processes, such as photosynthesis; plant and soil respiration; and ecosystem carbon, nitrogen, and water cycling, and it includes a comparatively detailed individual-based representation of resource competition, plant growth, and vegetation dynamics as well as fire disturbance. Although not enabled here, the model framework also includes a crop and managed-land scheme, a representation of arctic methane and permafrost, and a choice of fire models; and hence it represents many important terrestrial biosphere processes and provides a wide range of prognostic trace-gas emissions from vegetation, soil, and fire. We evaluated an online one-way-coupled model configuration (with climate variable being passed from EMAC to LPJ-GUESS but no return information flow) by conducting simulations at three spatial resolutions (T42, T63, and T85). These were compared to an expert-derived map of potential natural vegetation and four global gridded data products: tree cover, biomass, canopy height, and gross primary productivity (GPP). We also applied a post hoc land use correction to account for human land use. The simulations give a good description of the global potential natural vegetation distribution, although there are some regional discrepancies. In particular, at the lower spatial resolutions, a combination of low-temperature and low-radiation biases in the growing season of the EMAC climate at high latitudes causes an underestimation of vegetation extent. Quantification of the agreement with the gridded datasets using the normalised mean error (NME) averaged over all datasets shows that increasing the spatial resolution from T42 to T63 improved the agreement by 10 %, and going from T63 to T85 improved the agreement by a further 4 %. The highest-resolution simulation gave NME scores of 0.63, 0.66, 0.84, and 0.53 for tree cover, biomass, canopy height, and GPP, respectively (after correcting tree cover and biomass for human-caused deforestation which was not present in the simulations). These scores are just 4 % worse on average than an offline LPJ-GUESS simulation using observed climate data and corrected for deforestation by the same method. However, it should be noted that the offline LPJ-GUESS simulation used a higher spatial resolution, which makes the evaluation more rigorous, and that excluding GPP from the datasets (which was anomalously better in the EMAC simulations) gave 10 % worse agreement for the EMAC simulation than the offline simulation. Gross primary productivity was best simulated by the coupled simulations, and canopy height was the worst. Based on this first evaluation, we conclude that the coupled model provides a suitable means to simulate dynamic vegetation processes in EMAC. |
---|