Calcification responses of symbiotic and aposymbiotic corals to near-future levels of ocean acidification

Increasing the acidity of ocean waters will directly threaten calcifying marine organisms such as reef-building scleractinian corals, and the myriad of species that rely on corals for protection and sustenance. Ocean pH has already decreased by around 0.1 pH units since the beginning of the industri...

Full description

Bibliographic Details
Published in:Biogeosciences
Main Authors: Ohki, S., Irie, T., Inoue, M., Shinmen, K., Kawahata, H., Nakamura, T., Kato, A., Nojiri, Y., Suzuki, A., Sakai, K., van Woesik, R.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2013
Subjects:
Online Access:https://doi.org/10.5194/bg-10-6807-2013
https://noa.gwlb.de/receive/cop_mods_00021209
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00021164/bg-10-6807-2013.pdf
https://bg.copernicus.org/articles/10/6807/2013/bg-10-6807-2013.pdf
Description
Summary:Increasing the acidity of ocean waters will directly threaten calcifying marine organisms such as reef-building scleractinian corals, and the myriad of species that rely on corals for protection and sustenance. Ocean pH has already decreased by around 0.1 pH units since the beginning of the industrial revolution, and is expected to decrease by another 0.2–0.4 pH units by 2100. This study mimicked the pre-industrial, present, and near-future levels of pCO2 using a precise control system (± 5% pCO2), to assess the impact of ocean acidification on the calcification of recently settled primary polyps of Acropora digitifera, both with and without symbionts, and adult fragments with symbionts. The increase in pCO2 of ~100 μatm between the pre-industrial period and the present had more effect on the calcification rate of adult A. digitifera than the anticipated future increases of several hundreds of micro-atmospheres of pCO2. The primary polyps with symbionts showed higher calcification rates than primary polyps without symbionts, suggesting that: (i) primary polyps housing symbionts are more tolerant to near-future ocean acidification than organisms without symbionts, and (ii) corals acquiring symbionts from the environment (i.e., broadcasting species) will be more vulnerable to ocean acidification than corals that maternally acquire symbionts.