Inconsistency in precipitation measurements across the Alaska–Yukon border
This study quantifies the inconsistency in gauge precipitation observations across the border of Alaska and Yukon. It analyses the precipitation measurements by the national standard gauges (National Weather Service (NWS) 8 in. gauge and Nipher gauge) and the bias-corrected data to account for wind...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2015
|
Subjects: | |
Online Access: | https://doi.org/10.5194/tc-9-2417-2015 https://noa.gwlb.de/receive/cop_mods_00014378 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00014333/tc-9-2417-2015.pdf https://tc.copernicus.org/articles/9/2417/2015/tc-9-2417-2015.pdf |
Summary: | This study quantifies the inconsistency in gauge precipitation observations across the border of Alaska and Yukon. It analyses the precipitation measurements by the national standard gauges (National Weather Service (NWS) 8 in. gauge and Nipher gauge) and the bias-corrected data to account for wind effect on the gauge catch, wetting loss and trace events. The bias corrections show a significant amount of errors in the gauge records due to the windy and cold environment in the northern areas of Alaska and Yukon. Monthly corrections increase solid precipitation by 136 % in January and 20 % for July at the Barter Island in Alaska, and about 31 % for January and 4 % for July at the Yukon stations. Regression analyses of the monthly precipitation data show a stronger correlation for the warm months (mainly rainfall) than for cold month (mainly snowfall) between the station pairs, and small changes in the precipitation relationship due to the bias corrections. Double mass curves also indicate changes in the cumulative precipitation over the study periods. This change leads to a smaller and inverted precipitation gradient across the border, representing a significant modification in the precipitation pattern over the northern region. Overall, this study discovers significant inconsistency in the precipitation measurements across the USA–Canada border. This discontinuity is greater for snowfall than for rainfall, as gauge snowfall observations have large errors in windy and cold conditions. This result will certainly impact regional, particularly cross-border, climate and hydrology investigations. |
---|