Halogen-based reconstruction of Russian Arctic sea ice area from the Akademii Nauk ice core (Severnaya Zemlya)

The role of sea ice in the Earth climate system is still under debate, although it is known to influence albedo, ocean circulation, and atmosphere–ocean heat and gas exchange. Here we present a reconstruction of 1950 to 1998 AD sea ice in the Laptev Sea based on the Akademii Nauk ice core (Severnaya...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Spolaor, A., Opel, T., McConnell, J. R., Maselli, O. J., Spreen, G., Varin, C., Kirchgeorg, T., Fritzsche, D., Saiz-Lopez, A., Vallelonga, P.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2016
Subjects:
Online Access:https://doi.org/10.5194/tc-10-245-2016
https://noa.gwlb.de/receive/cop_mods_00014188
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00014144/tc-10-245-2016.pdf
https://tc.copernicus.org/articles/10/245/2016/tc-10-245-2016.pdf
Description
Summary:The role of sea ice in the Earth climate system is still under debate, although it is known to influence albedo, ocean circulation, and atmosphere–ocean heat and gas exchange. Here we present a reconstruction of 1950 to 1998 AD sea ice in the Laptev Sea based on the Akademii Nauk ice core (Severnaya Zemlya, Russian Arctic). The chemistry of halogens bromine (Br) and iodine (I) is strongly active and influenced by sea ice dynamics, in terms of physical, chemical and biological process. Bromine reacts on the sea ice surface in autocatalyzing "bromine explosion" events, causing an enrichment of the Br / Na ratio and hence a bromine excess (Brexc) in snow compared to that in seawater. Iodine is suggested to be emitted from algal communities growing under sea ice. The results suggest a connection between Brexc and spring sea ice area, as well as a connection between iodine concentration and summer sea ice area. The correlation coefficients obtained between Brexc and spring sea ice (r = 0.44) as well as between iodine and summer sea ice (r = 0.50) for the Laptev Sea suggest that these two halogens could become good candidates for extended reconstructions of past sea ice changes in the Arctic.