Reflective properties of white sea ice and snow
White ice (ice with a highly scattering granular layer on top of its surface) and snow-covered ice occupy a large part of the sea ice area in the Arctic, the former in summer, the latter in the cold period. The inherent optical properties (IOPs) and the reflectance of these types of ice are consider...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Copernicus Publications
2016
|
Subjects: | |
Online Access: | https://doi.org/10.5194/tc-10-2541-2016 https://noa.gwlb.de/receive/cop_mods_00011275 https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00011232/tc-10-2541-2016.pdf https://tc.copernicus.org/articles/10/2541/2016/tc-10-2541-2016.pdf |
Summary: | White ice (ice with a highly scattering granular layer on top of its surface) and snow-covered ice occupy a large part of the sea ice area in the Arctic, the former in summer, the latter in the cold period. The inherent optical properties (IOPs) and the reflectance of these types of ice are considered from the point of view of the light scattering and radiative transfer theories. The IOPs – the extinction and absorption coefficients and the scattering phase function – are derived with the assumption that both the snow cover and the scattering layer of white ice are random mixtures of air and ice with the characteristic grain size significantly larger than the wavelength of incident light. Simple analytical formulas are put forward to calculate the bidirectional reflectance factor (BRF), albedo at direct incidence (the directional–hemispherical reflectance), and albedo at diffuse incidence (the bihemispherical reflectance). The optical model developed is verified with the data of the in situ measurements made during the R/V Polarstern expedition ARK-XXVII/3 in 2012. |
---|