Location and distribution of micro-inclusions in the EDML and NEEM ice cores using optical microscopy and in situ Raman spectroscopy

Impurities control a variety of physical properties of polar ice. Their impact can be observed at all scales – from the microstructure (e.g., grain size and orientation) to the ice sheet flow behavior (e.g., borehole tilting and closure). Most impurities in ice form micrometer-sized inclusions. It h...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Eichler, Jan, Kleitz, Ina, Bayer-Giraldi, Maddalena, Jansen, Daniela, Kipfstuhl, Sepp, Shigeyama, Wataru, Weikusat, Christian, Weikusat, Ilka
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2017
Subjects:
Online Access:https://doi.org/10.5194/tc-11-1075-2017
https://noa.gwlb.de/receive/cop_mods_00010258
https://noa.gwlb.de/servlets/MCRFileNodeServlet/cop_derivate_00010215/tc-11-1075-2017.pdf
https://tc.copernicus.org/articles/11/1075/2017/tc-11-1075-2017.pdf
Description
Summary:Impurities control a variety of physical properties of polar ice. Their impact can be observed at all scales – from the microstructure (e.g., grain size and orientation) to the ice sheet flow behavior (e.g., borehole tilting and closure). Most impurities in ice form micrometer-sized inclusions. It has been suggested that these µ inclusions control the grain size of polycrystalline ice by pinning of grain boundaries (Zener pinning), which should be reflected in their distribution with respect to the grain boundary network. We used an optical microscope to generate high-resolution large-scale maps (3 µm pix−1, 8 × 2 cm2) of the distribution of micro-inclusions in four polar ice samples: two from Antarctica (EDML, MIS 5.5) and two from Greenland (NEEM, Holocene). The in situ positions of more than 5000 µ inclusions have been determined. A Raman microscope was used to confirm the extrinsic nature of a sample proportion of the mapped inclusions. A superposition of the 2-D grain boundary network and µ-inclusion distributions shows no significant correlations between grain boundaries and µ inclusions. In particular, no signs of grain boundaries harvesting µ inclusions could be found and no evidence of µ inclusions inhibiting grain boundary migration by slow-mode pinning could be detected. Consequences for our understanding of the impurity effect on ice microstructure and rheology are discussed.