Investigation of dust bands from blue ice fields in the Lewis Cliff (Beardmore) area, Antarctica: A progress report
Blue ice fields in Antarctica are well known for their high areal meteorite concentrations. The exact type of accumulation model and the age of the ice is still not well known. Dust bands on blue ice fields may help to clarify some of these problems. Dust, which has been isolated from dust band samp...
Main Authors: | , , , |
---|---|
Format: | Report |
Language: | English |
Published: |
Institute of Geochemistry, University of Vienna/National Institute of Polar Research/Department of Geology, University of Pittsburgh/Department of Geology, University of Pittsburgh
1988
|
Subjects: | |
Online Access: | https://nipr.repo.nii.ac.jp/?action=repository_uri&item_id=4463 http://id.nii.ac.jp/1291/00004463/ https://nipr.repo.nii.ac.jp/?action=repository_action_common_download&item_id=4463&item_no=1&attribute_id=18&file_no=1 |
Summary: | Blue ice fields in Antarctica are well known for their high areal meteorite concentrations. The exact type of accumulation model and the age of the ice is still not well known. Dust bands on blue ice fields may help to clarify some of these problems. Dust, which has been isolated from dust band samples from blue ice areas in the Lewis Cliff/Walcott Neve area (Beardmore region), Antarctica, was studied to determine petrographic characteristics and chemical compositions. One sample has an average grain size of around 0.5mm, and is rather different from the others in its abundances of trace elements. The REE pattern and some other trace element ratios of that sample suggest it is a sediment from the local Beacon Supergroup, which has been scooped up from the ground by ice movement. The other five samples which were investigated have very small grain sizes (20μm), and abundant glass shards. Major element data on the glass shards (and some feldspar crystals, which are also present in the dust band samples) allow the conclusion that they have originated from an alkaline volcano. The chemical composition of the glasses is highly variable, some showing basanitic composition, some showing trachytic or peralkaline K-trachytic composition. The silica vs. sum of alkalis plot shows that the Lewis Cliff samples are different from dust collected at the Allan Hills, but that there is a close similarity with volcanic material from The Pleiades, Northern Victoria Land. The trace element chemistry of all volcanic samples show the characteristic volcanic trace elements, like Ta, W, Sb, Th, and the REE, enriched by a considerable factor. The REE patterns exhibit a prominent negative Eu anomaly, which may be explained by mixing basanites (no Eu anomaly, but steep REE patterns) with K-trachytes and peralkaline K-trachytes (very pronounced negative Eu anomaly). The same components are obvious in major element analyses of individual glass shards, thus each dust band is a mixture of at least three different source materials (which, ... |
---|