The origin and fate of subantarctic mode water in the Southern Ocean

Subantarctic Mode Water (SAMW) forms in deep mixed layers just north of the Antarctic Circumpolar Current in winter, playing a fundamental role in the ocean uptake of heat and carbon. Using a gridded Argo product and the ERA-Interim reanalysis for years 2004-2018, the seasonal evolution of the SAMW...

Full description

Bibliographic Details
Published in:Journal of Physical Oceanography
Main Authors: Li, Z., England, M.H., Groeskamp, S., Cerovecki, I., Luo, Y.
Format: Article in Journal/Newspaper
Language:English
Published: 2021
Subjects:
Online Access:http://imis.nioz.nl/imis.php?module=ref&refid=340106
Description
Summary:Subantarctic Mode Water (SAMW) forms in deep mixed layers just north of the Antarctic Circumpolar Current in winter, playing a fundamental role in the ocean uptake of heat and carbon. Using a gridded Argo product and the ERA-Interim reanalysis for years 2004-2018, the seasonal evolution of the SAMW volume is analyzed using both a kinematic estimate of the subduction rate and a thermodynamic estimate of the air-sea formation rate. The seasonal SAMW volume changes are separately estimated within the monthly mixed layer and in the interior below it. We find that the variability of SAMW volume is dominated by changes in SAMW volume in the mixed layer. The seasonal variability of SAMW volume in the mixed layer is governed by formation due to air-sea buoyancy fluxes (45%, lasting from July to August), entrainment (35%), and northward Ekman transport across the Subantarctic Front (10%). The interior SAMW formation is entirely controlled by exchanges between the mixed layer and the interior (i.e. instantaneous subduction), which occurs mainly during August-October. The annual mean subduction estimate from a Lagrangian approach shows strong regional variability with hotspots of large SAMW subduction. The SAMW subduction hotspots are consistent with the distribution and export pathways of SAMW over the central and eastern parts of the south Indian and Pacific Oceans. Hotspots in the south Indian Ocean produce strong subduction of 8 and 9 Sv for the light and southeast Indian SAMW, respectively, while SAMW subduction of 6 and 4 Sv occurs for the central and southeast Pacific SAMW, respectively.