Species interactions, environmental gradients and body size shape population niche width

1. Competition for shared resources is commonly assumed to restrict population-level niche width of coexisting species. However, the identity and abundance of coexisting species, the prevailing environmental conditions, and the individual body size may shape the effects of interspecific interactions...

Full description

Bibliographic Details
Published in:Journal of Animal Ecology
Main Authors: Eloranta, Antti, Finstad, Anders Gravbrøt, Sandlund, Odd Terje, Knudsen, Rune, Kuparinen, Anna, Amundsen, Per-Arne
Format: Article in Journal/Newspaper
Language:English
Published: 2021
Subjects:
Online Access:https://hdl.handle.net/11250/3021741
https://doi.org/10.1111/1365-2656.13611
Description
Summary:1. Competition for shared resources is commonly assumed to restrict population-level niche width of coexisting species. However, the identity and abundance of coexisting species, the prevailing environmental conditions, and the individual body size may shape the effects of interspecific interactions on species’ niche width. 2. Here we study the effects of interspecific and intraspecific interactions, lake area and altitude, and fish body size on the trophic niche width and resource use of a generalist predator, the littoral-dwelling large, sparsely rakered morph of European whitefish (Coregonus lavaretus; hereafter LSR whitefish). We use stable isotope, diet and survey fishing data from 14 subarctic lakes along an environmental gradient in northern Norway. 3. The isotopic niche width of LSR whitefish showed a humped-shaped relationship with increasing relative abundance of sympatric competitors, suggesting widest population niche at intermediate intensity of interspecific interactions. The isotopic niche width of LSR whitefish tended to decrease with increasing altitude, suggesting reduced niche in colder, less productive lakes. 4. LSR whitefish typically shifted to a higher trophic position and increased reliance on littoral food resources with increasing body size, although between-lake differences in ontogenetic niche shifts were evident. In most lakes, LSR whitefish relied less on littoral food resources than coexisting fishes and the niche overlap between sympatric competitors was most evident among relatively large individuals (>250 mm). Individual niche variation was highest among >200 mm long LSR whitefish, which likely have escaped the predation window of sympatric predators. 5. We demonstrate that intermediate intensity of interspecific interactions may broaden species’ niche width, whereas strong competition for limited resources and high predation risk may suppress niche width in less productive environments. Acknowledging potential humped-shaped relationships between population niche width and ...