Genetic evidence of farmed straying and introgression in Swedish wild salmon populations
Escaped farmed Atlantic salmon represent a well-documented and ongoing threat to wild conspecific populations. In Norway, the world-leading producer of farmed salmon, annual monitoring of straying and genetic introgression by farmed escapees in wild salmon rivers has been carried out since the late...
Published in: | Aquaculture Environment Interactions |
---|---|
Main Authors: | , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
2021
|
Subjects: | |
Online Access: | https://hdl.handle.net/11250/2987637 https://doi.org/10.3354/aei00423 |
Summary: | Escaped farmed Atlantic salmon represent a well-documented and ongoing threat to wild conspecific populations. In Norway, the world-leading producer of farmed salmon, annual monitoring of straying and genetic introgression by farmed escapees in wild salmon rivers has been carried out since the late 1980s. In this study, we applied molecular and statistical methods routinely used in the Norwegian monitoring programme to investigate the magnitude of escaped farmed salmon and genetic introgression in salmon rivers on the west coast of Sweden, where suspected escapees have been observed. Our results confirm that escaped farmed salmon stray, successfully spawn, and produce offspring at levels similar to those observed in neighbouring Norway. These findings raise concerns over population productivity and long-term viability and highlight the need for more permanent monitoring of the presence and consequences of escaped farmed salmon in Swedish salmon rivers. Our results further illustrate that farmed gene flow may constitute a transboundary problem with potential international implications. Gene flow · Aquaculture · Atlantic salmon · Salmo salar · Single nucleotide polymorphisms · SNPs publishedVersion |
---|