Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 1. Local time, latitudinal, seasonal, and solar cycle dependence

We analyze ground-based Fabry-Perot interferometer observations of upper thermospheric (∼250 km) horizontal neutral winds derived from Doppler shifts in the 630.0 nm (red line) nightglow. The winds were measured over the following locations: South Pole (90°S), Halley (76°S, 27°W), Arequipa (17°S, 72...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research
Main Authors: Emmert, J.T., Faivre, M.L., Hernandez, G., Jarvis, M.J., Meriwether, J.W., Niciejewski, R.J., Sipler, D.P., Tepley, C.A.
Format: Article in Journal/Newspaper
Language:unknown
Published: American Geophysical Union 2006
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/933/
http://www.agu.org/pubs/crossref/2006/2006JA011948.shtml
https://doi.org/10.1029/2006JA011948
Description
Summary:We analyze ground-based Fabry-Perot interferometer observations of upper thermospheric (∼250 km) horizontal neutral winds derived from Doppler shifts in the 630.0 nm (red line) nightglow. The winds were measured over the following locations: South Pole (90°S), Halley (76°S, 27°W), Arequipa (17°S, 72°W), Arecibo (18°N, 67°W), Millstone Hill (43°N, 72°W), Søndre Strømfjord (67°N, 51°W), and Thule (77°N, 68°W). We derive climatological quiet time (Kp < 3) wind patterns as a function of local time, solar cycle, day of year, and the interplanetary magnetic field (IMF), and provide parameterized representations of these patterns. At the high-latitude stations, and at Arequipa near the geomagnetic equator, wind speeds tend to increase with increasing solar extreme ultraviolet (EUV) irradiance. Over Millstone Hill and Arecibo, solar EUV has a negative effect on wind magnitudes. As represented by the 10.7 cm radio flux proxy, the solar EUV dependence of the winds at all latitudes is characterized by a saturation or weakening of the effect above moderate values (F 10.7 > 150). The seasonal dependence of the winds is generally annual, but there are isolated cases in which a semiannual variation is observed. Within the austral winter, winds measured from the South Pole show a substantial intraseasonal variation only along longitudes directed toward the magnetic pole. IMF effects are described in a companion paper.