Four unreported emperor penguin colonies discovered by satellite

Predictions of the future emperor penguins population, linked to anthropogenic climate change, are stark. Current models suggest that if CO2 emissions continue to rise at present rates, almost all colonies will be quasi-extinct by the end of the century (Jenouvrier et al. 2021). The monitoring of po...

Full description

Bibliographic Details
Published in:Antarctic Science
Main Author: Fretwell, Peter
Format: Article in Journal/Newspaper
Language:unknown
Published: Cambridge University Press 2024
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/536741/
https://www.cambridge.org/core/journals/antarctic-science/article/four-unreported-emperor-penguin-colonies-discovered-by-satellite/20956FD3E80F3604C21D0E2AA80FEF9B
Description
Summary:Predictions of the future emperor penguins population, linked to anthropogenic climate change, are stark. Current models suggest that if CO2 emissions continue to rise at present rates, almost all colonies will be quasi-extinct by the end of the century (Jenouvrier et al. 2021). The monitoring of populations is crucial to tracking these changes and, if possible, implementing conservation measures. Recent work using satellite imagery to discover, track and monitor emperor penguin populations has proved to be a key technology in understanding the locations, numbers and trends of the species (Barbraud & Weimerskirch 2001, Trathan et al. 2020, Jenouvrier et al. 2021). It also enables the discovery of unrecorded breeding sites (Fretwell et al. 2009), although there are inherent difficulties in determining what constitutes a new or undiscovered breeding colony (see Supplemental Material S1). In 2019, eight previously unreported emperor penguin breeding sites were found using the European Space Agency's Sentinel-2 satellite, a medium-resolution satellite with a spatial resolution of 10 m per pixel (Fretwell & Trathan 2021), bringing the number of known extant breeding locations to 61. Here, I report on the discovery of a further four breeding sites using Sentinel-2 and Maxar WorldView-2 imagery.