“Grey swan” storm surges pose a greater coastal flood hazard than climate change

In this paper, we show that over the next few decades, the natural variability of mid-latitude storm systems is likely to be a more important driver of coastal extreme sea levels than either mean sea level rise or climatically induced changes to storminess. Due to their episodic nature, the variabil...

Full description

Bibliographic Details
Published in:Ocean Dynamics
Main Authors: Horsburgh, Kevin, Haigh, Ivan D., Williams, Jane, De Dominicis, Michela, Wolf, Judith, Inayatillah, Addina, Byrne, David
Format: Article in Journal/Newspaper
Language:English
Published: 2021
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/530406/
https://nora.nerc.ac.uk/id/eprint/530406/1/Horsburgh2021_Article_GreySwanStormSurgesPoseAGreate.pdf
https://doi.org/10.1007/s10236-021-01453-0
Description
Summary:In this paper, we show that over the next few decades, the natural variability of mid-latitude storm systems is likely to be a more important driver of coastal extreme sea levels than either mean sea level rise or climatically induced changes to storminess. Due to their episodic nature, the variability of local sea level response, and our short observational record, understanding the natural variability of storm surges is at least as important as understanding projected long-term mean sea level changes due to global warming. Using the December 2013 North Atlantic Storm Xaver as a baseline, we used a meteorological forecast modification tool to create “grey swan” events, whilst maintaining key physical properties of the storm system. Here we define “grey swan” to mean an event which is expected on the grounds of natural variability but is not within the observational record. For each of these synthesised storm events, we simulated storm tides and waves in the North Sea using hydrodynamic models that are routinely used in operational forecasting systems. The grey swan storms produced storm surges that were consistently higher than those experienced during the December 2013 event at all analysed tide gauge locations along the UK east coast. The additional storm surge elevations obtained in our simulations are comparable to high-end projected mean sea level rises for the year 2100 for the European coastline. Our results indicate strongly that mid-latitude storms, capable of generating more extreme storm surges and waves than ever observed, are likely due to natural variability. We confirmed previous observations that more extreme storm surges in semi-enclosed basins can be caused by slowing down the speed of movement of the storm, and we provide a novel explanation in terms of slower storm propagation allowing the dynamical response to approach equilibrium. We did not find any significant changes to maximum wave heights at the coast, with changes largely confined to deeper water. Many other regions of the world ...