Late Pleistocene sediments, landforms and events in Scotland: a review of the terrestrial stratigraphic record
Lithostratigraphical studies coupled with the development of new dating methods has led to significant progress in understanding the Late Pleistocene terrestrial record in Scotland. Systematic analysis and re-evaluation of key localities have provided new insights into the complexity of the event st...
Published in: | Earth and Environmental Science Transactions of the Royal Society of Edinburgh |
---|---|
Main Authors: | , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Cambridge University Press
2019
|
Subjects: | |
Online Access: | http://nora.nerc.ac.uk/id/eprint/522808/ https://nora.nerc.ac.uk/id/eprint/522808/1/Late%20Pleistocene%20text%20and%20refs%20Nora.pd.pdf https://doi.org/10.1017/S1755691018000890 |
Summary: | Lithostratigraphical studies coupled with the development of new dating methods has led to significant progress in understanding the Late Pleistocene terrestrial record in Scotland. Systematic analysis and re-evaluation of key localities have provided new insights into the complexity of the event stratigraphy in some regions and the timing of Late Pleistocene environmental changes, but few additional critical sites have been described in the past 25 years. The terrestrial stratigraphic record remains important for understanding the timing, sequence and patterns of glaciation and deglaciation during the last glacial/interglacial cycle. Former interpretations of ice-free areas in peripheral areas during the Last Glacial Maximum (LGM) are inconsistent with current stratigraphic and dating evidence. Significant challenges remain to determine events and patterns of glaciation during the Early and Middle Devensian, particularly in the context of offshore evidence and ice sheet modelling that indicate significant build-up of ice throughout much of the period. The terrestrial evidence broadly supports recent reconstructions of a highly dynamic and climate-sensitive British–Irish Ice Sheet (BIIS), which apparently reached its greatest thickness in Scotland between 30 and 27ka, before the global LGM. A thick (relative to topography) integrated ice sheet reaching the shelf edge with a simple ice-divide structure was replaced after the LGM by a much thinner one comprising multiple dispersion centres and a more complex flow structure. |
---|