Cold tolerance of microarthropods

1. Microarthropods (Acari and Collembola) are dominant components of the terrestrial fauna in the Antarctic. Their cold tolerance, which forms the mainspring of their adaptational strategy, is reviewed against a background of their structure and function, and by comparison with other arthropods. 2....

Full description

Bibliographic Details
Published in:Biological Reviews
Main Authors: Cannon, R.J.C., Block, William
Format: Article in Journal/Newspaper
Language:unknown
Published: Wiley 1988
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/521533/
https://doi.org/10.1111/j.1469-185X.1988.tb00468.x
Description
Summary:1. Microarthropods (Acari and Collembola) are dominant components of the terrestrial fauna in the Antarctic. Their cold tolerance, which forms the mainspring of their adaptational strategy, is reviewed against a background of their structure and function, and by comparison with other arthropods. 2. Two species, the isotomid collembolan Cryptopygus antarcticus Willem and the oribatid mite Alaskozetes antarcticus (Michael), are examined in detail, and afford a comparative approach to the mechanisms underlying cold tolerance in insect and arachnid types. 3. All microarthropods appear to be freezing‐susceptible (unable to tolerate tissue ice), and they utilize varying levels of supercooling to avoid freezing. Gut contents are considered to be the prime nucleation site in most arthropods when supercooled, particularly for Antarctic species. Moulting also increases individual supercooling ability especially in Collembola, and the activity of ice‐nucleating bacteria in cold‐hardy arthropods may be important. 4. Sources of ice nucleators are many and varied, originating externally (motes) or internally (ice‐nucleating agents). They act either extracellularly (mainly in the haemolymph) to promote freezing in ice‐tolerant life stages, or intracellularly in freezing‐susceptible forms. Thermal hysteresis proteins, acting colligatively, occur in many arthropods including Collembola; they depress both the freezing point of body fluids and the whole‐body supercooling point of freezing‐ susceptible and freezing‐tolerant species. 5. Bimodal supercooling point distributions are a feature of microarthropods and water droplets. Samples of field populations of Antarctic mites and springtails show significant seasonal changes in these distributions, which in some respects are analogous to purely physical systems of water droplets. Supercooling points are confirmed as accurate measures of cold‐hardiness and survival for Antarctic species, but not necessarily for other arthropods. The effects of constant sub‐zero temperatures ...