The dynamics of Austfonna, Nordaustlandet, Svalbard: surface velocities, mass balance, and subglacial melt water

Glaciological measurements from Austfonna on Nordaustlandet, Svalbard, are needed as a prerequisite to mathematical modelling of ice-mass dynamics. Several upper and lower boundary conditions are set out in detail for a 670 km2 drainage basin (Basin 5) and are generalized to the whole ice cap where...

Full description

Bibliographic Details
Published in:Annals of Glaciology
Main Authors: Dowdeswell, Julian A., Drewry, David J.
Format: Article in Journal/Newspaper
Language:unknown
Published: International Glaciological Society 1989
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/521225/
https://doi.org/10.3189/S0260305500006935
Description
Summary:Glaciological measurements from Austfonna on Nordaustlandet, Svalbard, are needed as a prerequisite to mathematical modelling of ice-mass dynamics. Several upper and lower boundary conditions are set out in detail for a 670 km2 drainage basin (Basin 5) and are generalized to the whole ice cap where possible. The ice surface and bed topography are mapped for Basin 5. 30% of the basin lies below sea-level. Bed elevations range from -100 m to over 300 m, and maximum ice thickness is >500 m. A 21 km long trilateral network of stakes provides velocity and strain-rate data. Maximum ice-surface velocity is 47 m a−1 and maximum strain-rate is 0.64 × 10−2 a−1. Snow-line migration with time is mapped from digital Landsat MSS data, and mass-balance estimates are used to calculate balance velocities. At the equilibrium line, about 300–350 m in elevation, balance velocity and observed ice-surface velocity are comparable, indicating that the basin is approximately in balance. A first approximation is given for the rate of iceberg calving from the tide-water basin margins. Enhanced Landsat imagery also shows that turbid melt-water plumes of subglacial origin flow from the terminal ice cliffs, indicating that at least parts of the ice-cap margin are at the melting point. The margins of Basin 5, grounded below present sea-level, are likely to be underlain by deformable sediments, but inland the nature of the substrate is unknown.