Individuality in northern lapwing migration and its link to timing of breeding

We tracked eight adult northern lapwings Vanellus vanellus (six females and two males) from a Dutch breeding colony by light-level geolocation year-round, three of them for multiple years. We show that birds breeding virtually next to each other may choose widely separated wintering grounds, stretch...

Full description

Bibliographic Details
Published in:Journal of Avian Biology
Main Authors: Eichhorn, Götz, Bil, Willem, Fox, James W.
Format: Article in Journal/Newspaper
Language:English
Published: Wiley 2017
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/517858/
https://nora.nerc.ac.uk/id/eprint/517858/1/Eichhorn_et_al-2017-Journal_of_Avian_Biology.pdf
https://doi.org/10.1111/jav.01374
Description
Summary:We tracked eight adult northern lapwings Vanellus vanellus (six females and two males) from a Dutch breeding colony by light-level geolocation year-round, three of them for multiple years. We show that birds breeding virtually next to each other may choose widely separated wintering grounds, stretching from nearby the colony west towards the UK and Ireland, and southwest through France into Iberia and Morocco. However, individual lapwings appeared relatively faithful to a chosen wintering area, and timing of outward and homeward migration can be highly consistent between years. Movements of migratory individuals were usually direct and fast, with some birds covering distances of approximately 2000 km within 2 to 4 days of travel. The two males wintered closest and returned earliest to the breeding colony. The female lapwings returned well before the onset of breeding, spending a pre-laying period of 19 to 54 days in the wider breeding area. Despite the potential for high migration speeds, the duration that birds were absent from the breeding area increased with distance to wintering areas, a pattern which was mainly driven by an earlier outward migration of birds heading for more distant wintering grounds. Moreover, females that overwintered closer to colony bred earlier. A large variation in migration strategies found even within a single breeding colony has likely supported the species’ responsiveness to recent climate change as evidenced by a shortened migration distance and an advanced timing of reproduction in Dutch lapwings since the middle of the 20th century. Migration strategies may vary between species, populations, individuals and between years within an individual. Individuals from a particular breeding population may migrate to the same wintering area or they may spread out over much of the non-breeding range. These connections between breeding and non-breeding areas of a migratory species are called ‘migratory connectivity’, and the strength of migratory connectivity has implications for the ...