The impact of the Cretaceous–Paleogene (K–Pg) mass extinction event on the global sulfur cycle: Evidence from Seymour Island, Antarctica

The Cretaceous–Paleogene (K–Pg) mass extinction event 66 million years ago led to large changes to the global carbon cycle, primarily via a decrease in primary or export productivity of the oceans. However, the effects of this event and longer-term environmental changes during the Late Cretaceous on...

Full description

Bibliographic Details
Published in:Geochimica et Cosmochimica Acta
Main Authors: Witts, James D., Newton, Robert J., Mills, Benjamin J.W., Wignall, Paul B., Bottrell, Simon H., Hall, Joanna L.O., Francis, Jane E., Crame, J. Alistair
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2018
Subjects:
Online Access:http://nora.nerc.ac.uk/id/eprint/517784/
https://nora.nerc.ac.uk/id/eprint/517784/1/Witts.pdf
https://www.sciencedirect.com/science/article/pii/S0016703718301194
Description
Summary:The Cretaceous–Paleogene (K–Pg) mass extinction event 66 million years ago led to large changes to the global carbon cycle, primarily via a decrease in primary or export productivity of the oceans. However, the effects of this event and longer-term environmental changes during the Late Cretaceous on the global sulfur cycle are not well understood. We report new carbonate associated sulfate (CAS) sulfur isotope data derived from marine macrofossil shell material from a highly expanded high latitude Maastrichtian to Danian (69–65.5 Ma) succession located on Seymour Island, Antarctica. These data represent the highest resolution seawater sulfate record ever generated for this time interval, and are broadly in agreement with previous low-resolution estimates for the latest Cretaceous and Paleocene. A vigorous assessment of CAS preservation using sulfate oxygen, carbonate carbon and oxygen isotopes and trace element data, suggests factors affecting preservation of primary seawater CAS isotopes in ancient biogenic samples are complex, and not necessarily linked to the preservation of original carbonate mineralogy or chemistry. Primary data indicate a generally stable sulfur cycle in the early-mid Maastrichtian (69 Ma), with some fluctuations that could be related to increased pyrite burial during the ‘mid-Maastrichtian Event’. This is followed by an enigmatic +4‰ increase in δ34SCAS during the late Maastrichtian (68 to 66 Ma), culminating in a peak in values in the immediate aftermath of the K–Pg extinction which may be related to temporary development of oceanic anoxia in the aftermath of the Chicxulub bolide impact. There is no evidence of the direct influence of Deccan volcanism on the seawater sulfate isotopic record during the late Maastrichtian, nor of a direct influence by the Chicxulub impact itself. During the early Paleocene (magnetochron C29R) a prominent negative excursion in seawater δ34S of 3–4‰ suggests that a global decline in organic carbon burial related to collapse in export productivity, also ...